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Intelligent Threshold Prediction
for Hybrid Mesh Segmentation Through
Artificial Neural Network

Vaibhav J. Hase , Yogesh J. Bhalerao , G. J. Vikhe Patil
and Mahesh P. Nagarkar

Abstract Accurate and reliable Area deviation factor (threshold) is one of the1

decisive factors in hybrid mesh segmentation. Inadequate threshold leads to under-2

segmentation or over-segmentation. Setting the optimal threshold is a difficult task for3

a layman. This proposed method, automatically predicts the threshold using artificial4

neural networks (ANN). ANN predicts the threshold by considering mesh quality5

of Computer-Aided Design (CAD) mesh model as input feature vectors. Extensive6

testing on benchmark test cases validates ANN prediction model, and based on7

Levenberg-Marquardt back propagation (LM-BP) improves the accuracy and stabil-8

ity of prediction. The efficacy of the approach is quantified by measuring coverage.9

The ANN predicts the threshold elegantly using LM-BP algorithm with coverage for10

hybrid mesh segmentation greater than 95%. The novelty of the proposed method11

lies in the “mesh quality”-based threshold prediction through ANN. The predicted12

threshold finds application in automatic feature recognition from CAD mesh model13

using hybrid mesh segmentation.14

Keywords Artificial neural network · CAD mesh model · Feature recognition ·15

Hybrid mesh segmentation · Threshold prediction16

1 Introduction17

CAD mesh models are generated by exporting B-rep models using Computer-Aided18

Design (CAD) software into Standard Triangulated Language (STL). Almost all com-19

mercial CAD/CAM systems support STL which makes STL a platform-independent20

CAD data exchange format [1]. STL has been used in 3D printing, computer graphics,21
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2 V. J. Hase et al.

Fig. 1 Sensitivity of the threshold (δ) a δ = 0.30, b δ = 0.50, c δ = 0.65, d δ = 0.75 [7]

Computer-Aided Manufacturing (CAM), and Computer-Aided Engineering (CAE)22

applications [2].23

Feature recognition (FR) recreates the feature in the target system. The commer-24

cial FR tool works on B-rep models. However, innovative 3D design and manufac-25

turing methods are mesh-based [3]. A need exists to develop FR tool for CAD mesh26

model (CMM), which will be a novel data translator utility in CAD/CAM and CAE27

applications [1].28

The most favored approach for extracting features from CMM is segmentation29

[4]. Mesh segmentation partitions CMM into distinct, mathematically analyzable30

regions [5]. Hase et al. [6] have implemented a hybrid mesh segmentation to extract31

volumetric features from CMM. Hybrid mesh segmentation heavily depends on Area32

Deviation Factor (threshold δ). Figure 1 illustrates the effect of varying threshold from33

0.30 to 0.75 on segmentation quality. For a layman, it is difficult to set the appropriate34

threshold.35

The above observations inspire the research work reported in this paper. In this36

research paper, an elegant threshold prediction for hybrid mesh segmentation through37

Artificial Neural Network (ANN) has been proposed. ANN makes hybrid mesh38

segmentation automatic. LM-BP have been proposed to predict thresholds with two39

input feature vectors, viz., standard deviation of “ratio of area to max side” and “ratio40

of inradius to circumradius” of a CAD mesh model in predicting threshold for hybrid41

mesh segmentation.42

1.1 Contributions43

The following are our significant contributions:44

• Establish a method for threshold prediction using ANN.45

• ANN efficiently predicts the threshold for hybrid mesh segmentation.46

• Successfully applied ANN for predicting threshold based on mesh quality.47

• Automatic intelligent threshold prediction for automated hybrid mesh48

segmentation.49
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Intelligent Threshold Prediction for Hybrid Mesh Segmentation … 3

1.2 Outline50

The outline of the paper is as follows: Sect. 2 discusses the literature findings related to51

threshold prediction through ANN. Section 3 depicts the framework of the proposed52

methodology. ANN for threshold prediction is presented in Sect. 4. Results and53

discussion are illustrated in Sect. 5. Section 6 presents conclusions and future scope.54

2 Literature Findings55

ANN is one of the most frequently used computing methods for prediction. It finds56

applications in the optimization of decision, prediction, enhancing process control,57

signal processing, pattern recognition, parallel computing, etc.58

As noted by Hsu [8], 90% neural network (NN) applications were Backpropa-59

gation (BP). The ANN has been used in the prediction of rainfall [9], rail wheel AQ160

wear [10], strength properties of carbon fiber-reinforced concrete [11], heat transfer61

coefficient [12], electricity consumption in a building [13], groundwater level [14],62

thermal resistance of knitted fabrics [15], Tool life [16], air pollution [17], etc.63

Hase et al. [7] have attempted to predict the threshold for hybrid mesh segmen-64

tation using KNN classifiers. However, the performance of threshold prediction sig-65

nificantly depends on the value of K (nearest neighbor).66

From the literature review, it is evident that most of the researchers have used a67

trial and error approach for a setting threshold which is laborious [18]. To the best68

of our knowledge, threshold prediction for the computer graphics domain has not69

been addressed so far. The need exists to develop an elegant approach to predict the70

threshold for hybrid mesh segmentation.71

3 Methodology72

The proposed methodology involves two phases, viz., Levenberg-Marquardt back73

propagation (LM-BP) based threshold prediction and hybrid mesh segmentation.74

Figure 2 illustrates the overall framework for threshold prediction using ANN for75

hybrid mesh segmentation. The MATLABTM neural network Toolbox is used for76

implementations and simulations.77
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4 V. J. Hase et al.

Fig. 2 The framework for threshold prediction using ANN

3.1 LM-BP Neural Network for Threshold Prediction78

In the present study, 2-250-1 supervised learning, a multilayer neural network (NN)79

is built for threshold prediction. A detailed description of LM-BP functional module80

is discussed in Sect. 4.81

3.2 Hybrid Mesh Segmentation82

Hybrid mesh segmentation partitions CMM into basic primitives like a plane, sphere,83

cylinder, cone, and tori. Hybrid mesh segmentation uses “Facet Area” property to84

cluster facets together, using a combination of vertex-based and facet-based region85

growing algorithms [6]. After segmentation, each cluster is subjected to several86

conformal tests, to identify the type of analytical surface it might be representing.87

The Hybrid mesh segmentation leads to over-segmentation or under-segmentation88

based on input threshold. The over-segmented regions are merged with the similar89

adjacent region by iterative region merging technique. Region merging results in90

small cracks at the region boundaries [19]. These cracks are filled by the reclama-91

tion process. Iterative region merging and reclamation make a watertight segmented92

model with distinct regions. Figure 3 illustrates examples of the cylindrical regions93

generated by the hybrid mesh segmentation. Figure 3a is the input mesh models,94

Fig. 3b illustrates the segmentation results (12 planes and 523 cylindrical patches),95

Fig. 3c shows the results of the iterative region merging process, Fig. 3d demon-96

strates the reclamation results and Fig. 3e illustrates the final region merging after97

reclamation (12 planes and 50 cylinders). Hase et al. [6] have reported a detailed98

description of hybrid mesh segmentation.99
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Intelligent Threshold Prediction for Hybrid Mesh Segmentation … 5

Fig. 3 Hybrid mesh segmentation process

4 LM-BP Neural Network for Threshold Prediction100

LM-BP is used to predict the threshold. The artificial network model is designed101

with 2-250-1 configuration with back propagation; see Fig. 4. The network has two102

neurons fed to the network representing feature vectors of CAD mesh model in the103

input layer: 250 hidden neurons in the hidden layer and one neuron for the threshold104

prediction for hybrid mesh segmentation in an output layer. Table 1 shows the AQ2105

parameters of ANN MATLABTM implementation.106

A systematic procedure for threshold prediction through ANN is illustrated in107

Fig. 5.108

Fig. 4 Model of the multilayer feedforward LM-BP algorithm

Table 1 Parameters for
neural network

Parameter Description

NN training method Leverberg-Marquardt (trainlm)

NN performance criteria Mean square error (MSE)

NN transfer function Tansig

NN type Feedforward backpropagation

NN learning function Learngdm

NN hidden layer 1

NN neurons 250

NN maximum epoch 100
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6 V. J. Hase et al.

Fig. 5 A systematic procedure ANN model

4.1 Datasets Used for Experiments109

To predict the threshold value for the test case is a cumbersome task. There is no110

universal way of finding the correct threshold. A trial and error approach has been111

used to identify a threshold value for each CAD model [18]. Until now, there has been112

no accepted benchmark for 3D CAD models [20]. In this research work proposed, a113

new 3D CAD model database as the training dataset has been created. CAD models114

are used for creating dataset are taken from NIST [21]. A training dataset is created115

for CAD mesh models, based on the accuracy of feature extracted and percentage of116

coverage.117

The dataset was created using 400 real CAD models. Dataset consists of 400118

number of records and six classes. All the records of the dataset have the same119

number of attributes. For each CAD model, we compute per face quality according120

to the triangle shape and aspect ratio. Each CAD model has three attributes in the121

dataset: standard deviation of “ratio of area to max side”; the standard deviation of122

“ratio of inradius to circumradius”, and the threshold value.123

4.2 Building ANN124

The ANN has been designed with 2-250-1 configuration with backpropagation. ANN125

is implemented with one hidden layer feedforward NN trained with LM-BP. To for-126

mulate an NN, the datasets are randomly divided into training, testing, and validation127

with 70%, 15%, and 15%, respectively.128

4.3 Training Network129

The training data is used to create the NN. It is used to adjust weights. The validation130

data validates the NN. The training of the NN is stopped based on validation data.131

The training is stopped when the mean square error (MSE) of the validation dataset132

stops improving. The testing data is independently used by created NN to check the133

performance of the created NN. Figure 6 shows the ANN training state.134
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Intelligent Threshold Prediction for Hybrid Mesh Segmentation … 7

Fig. 6 ANN training state:
MATLABTM

implementation

4.4 Testing Network135

The MSE is the squared difference between targets (simulation values) and output136

(i.e., ANN output values). The ANN model is tested for unseen data and Mean Square137

Error (MSE) is evaluated for measuring performance. Lower values of MSE means138

better trained model.139

5 Results and Discussion140

Figure 7 shows the regression plot for an ANN trained using training data. It shows141

correlation coefficients (R) values for validation data and testing data. A very good142

fit is observed having R values as 0.99392, 0.99367, 0.97794 for training, validation143

and testing data, respectively.144
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8 V. J. Hase et al.

Fig. 7 Regression plots for training, testing and validation phase of ANN

Figure 8 shows the MSE variation concerning epoch for training, validation, and145

testing. Performance after training has MSE 6.61 × 10−5 at 98 epoch, and best146

validation performance is 7.8917 × 10−5 at 98 epochs.147

The percentage coverage has been used to measure of success indicator for a148

hybrid mesh segmentation algorithm. It is a ratio of a number of features recognized149

to the number of features present in a CAD mesh model. The comparison has been150

carried out between thresholds predicated from ANN and the actual threshold set by151

trial and error. It is observed that predicted results have very good agreements with152

the manual threshold set results in excellent coverage for test cases. Figure 9 shows153

a performance measure of ANN threshold prediction for hybrid mesh segmentation.154

Table 2 compares the predicted result by ANN model with experimentation.155
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Intelligent Threshold Prediction for Hybrid Mesh Segmentation … 9

Fig. 8 MSE variation with respect to Epochs–MATLAB

Fig. 9 A performance measure of ANN threshold prediction for hybrid mesh segmentation

6 Conclusion156

This paper demonstrated a novel approach for threshold prediction for hybrid mesh157

segmentation through ANN. In this research work, LM-BP algorithm with 2-250-1158

configuration has been adopted. The results revealed that R-value (the correlation159

coefficients) 0.97794 (minimum value), shows the excellent correlation. The per-160

formance after training has MSE 6.61 × 10−5 at 98 epoch, and best validation161

performance is 7.8917 × 10−5 at 98 epochs.162
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10 V. J. Hase et al.

Table 2 Threshold comparison by experimentation and predicted by ANN

Model name Input parameter Threshold by NP Coverage (%)

Std. Dev1 Std. Dev2 Exp. ANN

Block 0.025786 0.043585 0.60 0.599979375415 14 100

Test case 0.147086 0.232507 0.70 0.699797156838 32 100

Cover rear 0.205617 0.312793 0.75 0.750079261828 45 100

Pipe 0.088974 0.145293 0.80 0.800233768031 62 100

Wherein
NP: Number of primitives extracted
Exp: Experimentation
Std. Dev1: Standard deviation of “ratio of area to max side”
Std. Dev2: Standard deviation of “ratio of inradius to circumradius”

Comparing predicted results with actual experimentation for unseen input data163

shows ANN outperforms favorably and found to be robust and consistent. ANN can164

be used as a reliable and efficient threshold predictor for hybrid mesh segmentation.165

Future work involves threshold predicting using deep learning and compares the166

results of ANN with deep learning.167

Acknowledgements Authors are grateful to Dr. V. D. Wakchaure and Dr. P. J. Pawar for their168
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