

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

2

AACCKKNNOOWWLLEEGGDDEEMMEENNTT

 This work gives me an opportunity to express deep gratitude for the same. While

preparing my dissertation report. I received endless help from number of people. This

report would be

 First and foremost, I thank my guide Prof S. M. Turkane, Head of Department, of

Electronics and Telecommunication, PREC, Loni for giving me his valuable time and

opportunity to present this dissertation report.

 I give my sincere regards to Prof. A. H. Ansari, Prof. S. A. Shaikh and Prof. S. G.

Galande, M. E. coordinator for their dispensable support, priceless suggestions and

valuable time.

 I also thank all other staff members for their advice and cooperation. Finally, I wish

to thank my parents and for being supportive to me, without whom this seminar could not

have seen light of the day.

 Every work is outcome of full proof planning, continuous hard work and organized

effort. This work is a combination of all three put together sincerely.

Mr. Pansare Sandeep Dilip

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

3

 CCOONNTTEENNTT

1 Introduction Pg no.

1.1 Project Overview . 7

1.2 Objectives . 7

2 Literature Survey

 Existing Technology and Research . 9

3 System Overview

3.1 Block Diagram . 11

3.2 Target Device. 12

3.3 Controller . 12

3.4 Ethernet Controller. 13

3.5 Slave Serial Mode. 15

4 Device Operations

 Device Operations . 17

5 Layout Details

5.1 Top layout . 19

5.2 Bottom layout . 20

6 Hardware Design

6.1 Power Supply . 21

6.2 PROM . 23

6.3 Resets . 23

6.4 Clock Circuit. 24

6.5 Switches. 25

6.6 LED. 25

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

4

6.7 RS232. 26

6.8 Ethernet . 28

6.9 LCD. 29

6.10 JTAG . 29

7 Software Design
7.1 PicoBlaze Microcontroller Features.
.

30

7.2 Why the PicoBlaze Microcontroller? .
.

31

7.3 Why Use a Microcontroller within an FPGA?
.

32

7.4 PicoBlaze functional blocks.
. . .

33

7.5 Source Code 37

8 Experimentation

8.1 Initialization of W5100 . 50

8.2 FPGA Configuration.
. .

51

8.3 Procedure.
.

52

9 Conclusion

9.1 Benefits of the Work . 58

9.2 Final Results .
. . .

58

9.3 Component Costing . 61

9.4 Future Scope . 62

References 63

Publications 65

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

5

List of Figures
Fig. No. Name Page No.

3.1 System Block Diagram 11

3.2 Controller Architecture 11

3.3 Block diagram of WIZNET 14

3.4 Slave Serial Mode 16

4.1 Device Operations 18

5.1 Top layout 19

5.2 Bottom Layout 20

6.1 Power Jack 21

6.2 1.2V Supply 21

6.3 2.5V Supply 22

6.4 3.3V Supply 22

6.5 PROM 23

6.6 Reset 23

6.7 Config Reset 24

6.8 Clock Circuit 24

6.9 Switches 25

6.10 LED 25

6.11 RS 232 27

6.12 RS 232 CONN 27

7.1
PicoBlaze Embedded Microcontroller Block
Diagram

33

8.1 Initialization of W5100 50

8.2 FPGA configuration I 51

8.3 FPGA configuration II 51

9.1 Testbench Waveform for TLC 60

9.2 Testbench Waveform for RAM 61

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

6

ABSTRACT

Optimizing the single t a r g e t device as a simulator in a multi user environment

is our aim to achieve. It is important step t o use FPGA to design and improve flow of

multi user data in a high speed computer network e n v i r o n m e n t . Hence, we create a

system where multiple users (computers) will use one target d e v i c e (F P G A) through

Ethernet without the need of actually carrying target device to each and every user. For this

we are using a controller module which consist of control logic and user

interface module.

It provides a more efficient way of utilizing a single board for hardware simulation.

It could place itself in educational establishments where the prototyping board does not

need to be changed from workstation to workstation and also provides an efficient way of

managing expensive resources.

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

7

Chapter 1

Introduction

1.1 Project Overview

 In this paper we look at a simple type of hardware simulation strategy where

there is no altitude, orientation, no l ine of s ite limitation for simulating on the

FPGA board and where multiple users can acquire the same board for their hardware

simulation but at different time connecting through network over TCP/IP.

 We will discuss hardware simulation, in particular for multi-user environment

an d different t r a n s m i s s i o n media. We will also see the future possibilities to reduce

the queue and accessibility of the FPGA board problem. A user can connect to FPGA

device either by Ethernet, WI-Fi, SPI or internet. Out of these transmission medias we

will concentrate on use of wired media.

1.2 Objectives

 Optimizing the single FPGA board resource as a simulator in a multi user

environment between end user and targeted device. In this project we look at a simple

type of hardware simulation strategy where multiple users can acquire the same board for

their hardware simulation but at different time connecting through TCP/IP. We

explain the FPGA development platform we use for controller, which includes the TCP/IP

interface through Ethernet for communication with user. We will also see the future

possibilities to reduce the queue and accessibility of the FPGA board problem. A user can

connect to target dev ice either by Ethernet or WI-Fi / Wi-Max , internet . Out of these

transmission Medias we will concentrate on use of Ethernet. We will use FPGA in both

target device and controller.

 The TCP/IP is an additional interface that is added to provide interface capabilities.

The TCP/IP protocol uses a two-layer protocol: the higher layer TCP provides

communication between the target board and source (PC) and breaks application layer

information into packets and TCP/IP provides two methods of data delivery but our

p r o j e c t a i m s a t interface implemented for connection-orientated delivery using TCP.

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

8

IP is the protocol responsible for addressing and routing packets between networks.

It ensures

 they reach the correct destination network. IP deals with the physical network interface

layer and for this we use Ethernet. The Ethernet module we designed to fit our

requirements is based on a standard module provided by WIZNET W5100. The module

contains an Ethernet port. TCP is the connection based communication method that will

establish connection in advance and deliver the data through the connection by using IP

Address and Port number of the systems. There are two methods to establish the

connection. One is SERVER mode (passive open) that is waiting for connection request.

The other is CLIENT mode (active open) that sends connection request to a server. The

Client program has two versions. The Server program must be run on the machine which

has the FPGA board plugged into an ISA slot. The Server creates a socket, through which it

accepts the Clients connections. The socket is handled as a text file. Both the Server and

Client can write and read from it. The Server contains the code for downloading the

configuration.

 The Client program must be run on the station that stores the configuration file. The

Client needs two parameters: the name of the file containing the configuration to be

downloaded and the IP address of the Server. The Client creates a socket too and tries to

connect its socket to the server. If it succeeds, the Client sends a header, which contains the

name of the file containing the configuration, and some commands to the Server. After the

header, it sends the configuration data. The socket is handled as a text file and the

configuration data is stored in the memory in binary format (independently from the file

format), the Client must encode the binary data into textual data (like MIME). This is

simple: the Client reads three bytes, which is 3 × 8 = 24 bits. It divides in four sections (24

= 4 × 6 bits), so now he has four 6-bit values.

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

9

Chapter 2

Literature Survey

2.1 Existing Technology and Research

 The ability to reconfigure an FPGA via the Internet was initially put forward by

Fallside [1] and since then has been widely developed and commercially realized. Other

work that is not directly related includes task management on FPGAs by Brebner [2] where

such an idea could be applied to multiple users/processes sharing a FPGA and platform

board for functional verification. This paper looks at a higher, simpler abstract view of

efficiently utilizing an FPGA prototyping board. Such a strategy would bring benefits to

FPGA rapid prototyping engineers, engineers changing workstations or on the move, and

distributed design teams posted around the globe. It could also place itself in educational

establishments where the prototyping board does not need to be changed from workstation

to workstation and also provides an efficient way of managing expensive FPGA resources.

The feasibility of run-time reconfiguration of FPGAs has been established by a

large number of case studies. However, these systems have typically involved an ad hoc

combination of hardware and software. The software that manages the dynamic

reconfiguration is typically specialized to one application and one hardware configuration.

Dynamic reconfiguration of FPGAs has become viable with the introduction of devices

that allow high speed partial reconfiguration, e.g., the Xilinx XC6200 series [3]. Dynamic

reconfiguration is usually performed by a software system that decides when to reprogram

part of the FPGA and with what. The simplest kind of run-time software simply selects a

precompiled circuit and transmits the programming data directly to the FPGA.

 Alternative to the use of Internet there has been also tremendous research in field of

hardware-software co-sy Hardware-software cosynthesis

algorithms automatically produce hardware-software architectures for distributed

embedded systems. Ideally, they minimize multiple costs, such as execution time, price,

and average power consumption. Given a specification, a hardware-software co synthesis al-

gorithm must select different processing elements (PEs) and communication resources to

use in the embedded system (allocation), determine which resource will be used to carry

outreach portion of the specif communication (assignment) and

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

10

produce a schedule for all of the

(scheduling). Given an embedded system specification, a co-synthesis algorithm produces

a detailed description of an architecture that meets the design constraints and optimizes a

set of costs.FPGAs are commonly used in distributed embedded systems. They share

many traits with application-specific integrated circuits (ASICs); they are parallel hardware

platforms. However, they have the advantages of reducing design time and supporting

dynamic (runtime) reconfiguration. Although FPGAs typically have lower performance,

higher power consumption, and higher energy consumption when compared with ASICs, for

many applications, they have substantially better performance, average power

consumption, and energy than general-purpose processors [4]. When a design uses dynamic

reconfiguration, it is important to minimize the overhead, i.e., time and energy consumption,

associated with reconfiguration. To reduce this overhead, much new reconfigurable

architecture has been proposed [5]. In modern dynamically reconfigurable FPGAs, the

embedded configuration storage circuitry can be updated selectively in a few clock

cycles without disturbing the execution of the remaining logic. These new designs have

increased the potential benefit of using dynamically reconfigurable FPGAs in low-power

embedded systems by dramatically reducing the performance and energy penalties of

dynamic reconfiguration. However, these costs are still substantial.

 The increasing demand and use of computers in universities and research labs in the

late 1960s generated the need to provide high-speed interconnections between computer

systems. Ethernet was developed at Xerox PARC in 1973 1975. In 1976, after the system

was deployed at PARC, Metcalfe and Boggs published a seminal paper, "Ethernet:

Distributed Packet-Switching for Local Computer Networks."It is important step for IP

and system development to use FPGA and IP core to design and improve flow of multi

user data in a high speed communication internet e n v i r o n m e n t and optimal

utilization o f available bandwidth. A user can connect to FPGA device either by

Ethernet, WI-Fi, ISA or internet[6][7]. Out of these transmission medias we will

concentrate on the use of wired media. There is no need for end users to have their own

FPGA device. Our aim is to use Xilinx system generator where multi users will use

same IP Core over a distance sharing only one FPGA resource through internet.

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

11

Chapter 3

System Overview

3.1 Block Diagram

We will see all these blocks in detail but first we will have an overview.

Target Device:

 Target device is the device which will be used for downloading the user program.

We will have such one target device in the network. This device will be shared in the

network.

Controller:

 Figure: 3.2 Controller Architecture

 Figure: 3.1 System Block Diagram

SLAVE
SERIAL
MODE

CONTROL
LOGIC

(FPGA with
Pico blaze)

SPI
INTER-

 FACE

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

12

 In this we will have FPGA kit which will be loaded with Pico-Blaze is used for

controlling purpose (controlling of target device) and hence called controller board. Slave

serial mode is used to connect to target device while SPI interface is used for interfacing

Ethernet module.

3.2 Target Device

Our aim is to share target device in a network. For this we have taken our target

device as FPGA (SPARTAN 3E). Spartan-3E FPGAs are programmed by loading

configuration data into robust, reprogrammable, static CMOS configuration latches (CCLs)

configuration data is stored externally in a PROM or some other non-volatile medium,

either on or off the board. After applying power, the configuration data is written to the

FPGA using any of seven different modes: master Serial from a Xilinx Platform Flash

PROM, Serial Peripheral Interface (SPI) from an industry-standard SPI serial Flash, Byte

Peripheral Interface (BPI) Up or Down from an industry-standard x8 or x8/x16 parallel

NOR Flash, Slave Serial typically downloaded from a processor, Slave Parallel, typically

downloaded from a processor, JTAG, typically downloaded from a processor or system

tester. Furthermore, Spartan-3E FPGAs support Multi boot configuration, allowing two or

more FPGA configuration bit streams to be stored in a single parallel NOR Flash. The

FPGA application controls which configuration to load next and when to load it. We will be

using slave serial mode for our target device.

3.3 Controller

our external host .This PicoBlaze soft processor core will be implemented in FPGA(control

logic). The PicoBlaze microcontroller is a compact, capable, and cost-effective fully

embedded 8-bit RISC microcontroller core optimized for the Xilinx FPGA families. The

PicoBlaze microcontroller core is totally embedded within the FPGA and requires no

external resources. The PicoBlaze microcontroller is extremely flexible. The basic

functionality is easily extended and enhanced by connecting additional FPGA logic to the

meet the specific features, function, and cost requirements of the target application. As the

PicoBlaze microcontroller is delivered as synthesizable VHDL source code, the core is

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

13

future-proof and can be migrated to future FPGA architectures, effectively eliminating

product obsolescence fears. Being integrated within the FPGA, the PicoBlaze

microcontroller reduces board space, design cost, and inventory.

 The PicoBlaze microcontroller is specifically designed and optimized for the Spartan-3

family and with the support of Spartan-6 and Virtex-6 FPGA architectures. As it is

delivered as VHDL source, the PicoBlaze microcontroller is immune to product

obsolescence as the microcontroller can be retargeted to future generations of Xilinx

FPGAs, exploiting future cost reductions and feature enhancements. Before the advent of

the PicoBlaze and MicroBlaze embedded processors, the microcontroller resided externally

to the FPGA, limiting the connectivity to other FPGA functions and restricting overall

interface performance. By contrast, the PicoBlaze microcontroller is fully embedded in the

FPGA with flexible, extensive on-chip connectivity to other FPGA resources. Signals

remain within the FPGA.

 The PicoBlaze microcontroller reduces system cost because it is a single-chip solution,

integrated within the FPGA and sometimes only occupying leftover FPGA resources. The

PicoBlaze microcontroller is resource efficient. Consequently complex applications are

sometimes best portioned across multiple PicoBlaze microcontrollers with each controller

implementing a particular function, for example, keyboard and display control, or system

management. Microcontrollers and FPGAs both successfully implement practically any

digital logic function. The program memory requirements grow with increasing complexity.

Programming control sequences or state machines in assembly code is often easier than

creating similar structures in FPGA logic. Microcontrollers are typically limited by

performance. Each instruction executes sequentially, as an application increases in

complexity, the number of instructions required to implement the application grows and

system performance decreases accordingly. A microcontroller embedded within the FPGA

provides the best of both worlds.

3.4 Ethernet Controller

 We are using W5100 as ehernet controller. It is a full-featured, single-chip Internet-

enabled 10/100 Mbps Ethernet controller designed for embedded applications where ease of

integration, stability, performance, area and system cost control are required. It has been

designed to facilitate easy implementation of Internet connectivity without OS . It is IEEE

802.3 10BASE-T and 802.3u 100BASE-TX compliant. Fig.4 shows the block diagram for

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

14

our ehernet controller. The W5100 includes fully hardwired, market-proven TCP/IP stack

and integrated Ethernet MAC & PHY. Hardwired TCP/IP stack supports TCP, UDP, IPv4,

ICMP, ARP, IGMP and PPPoE which has been proven in various applications for several

years. 16Kbytes internal buffer is included for data transmission. No need of consideration

for handling Ethernet Controller, but simple socket programming is required. For easy

integration, three different interfaces like memory access way, called direct, indirect bus

and SPI, are supported on the MCU side. TCP is the connection based communication

method that will establish connection in advance and deliver the data through the

connection by using IP Address and Port number of the systems. There are two methods to

establish the connection. One is SERVER mode(passive open) that is waiting for

connection request. The other is CLIENT mode (active open) that sends connection request

to a server.

 Figure: 3.3 Block diagram of WIZNET

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

15

Process of using General SPI Master Device:

1. Configure Input/output direction on SPI Master Device pins.

 /SS (Slave Select): Output pin

 SCLK (Serial Clock): Output pin

 MOSI (Master Out Slave In): Output pin

 MISO (Master In Slave Out): Input pin

2. Confi

3. Configure the registers on SPI Master Device.

 SPI Enable bit on SPCR register (SPI Control Register)

 Master/Slave select bit on SPCR register

 SPI Mode bit on SPCR register

 SPI data rate bit on SPCR register and SPSR register

 (SPI State Register)

4. Write desired value for transmission on SPDR register (SPI Data Register).

6. Wait for reception complete

3.5 Slave Serial Mode

 In Slave Serial mode, an external host such as microcontroller writes serial

configuration data into the FPGA (target device), using the synchronous serial interface. In

Slave Serial mode (M[2:0] = <1:1:1>), an external host such as a microprocessor or

Microcontroller writes serial configuration data into the FPGA, using the synchronous

serial interface shown in Figure 3.4. The figure shows optional components in gray and

uses a circled letter to associate a signal with more information found in the text. The serial

before each rising edge of the externally generated CCLK clock input.

 The intelligent host starts the configuration process by pulsing PROG_B and

monitoring that the INIT_B pin goes High, indicating that the FPGA is ready to receive its

first data.The host then continues supplying data and clock signals until either the DONE

pin goes High, indicating a successful configuration, or until the INIT_B pin goes Low,

indicating a configuration error. The configuration process requires more clock cycles than

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

16

indicated

start-up sequence, especially if the FPGA is programmed to wait for selected Digital Clock

Managers (DCMs) to lock to their respective clock inputs

Figure: 3.4 Slave Serial Mode

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

17

Chapter 4

Operations

4.1 DEVICE OPERATIONS

The W5100 is controlled by a set of instruction that is sent from a host controller,

commonly referred to as the SPI Master. The SPI Master communicates with W5100 via

the SPI bus which is composed of four signal lines: Slave Select (/SS), Serial Clock

(SCLK), MOSI (Master out Slave In), MISO (Master in Slave Out). The SPI protocol

defines four modes for its operation (Mode 0, 1, 2, 3). Each mode differs according to the

SCLK polarity and phase - how the polarity and phase control the flow of data on the SPI

bus. The W5100 operates as SPI Slave device and supports the most common modes - SPI

Mode 0 and 3.The only difference between SPI Mode 0 and 3 is the polarity of the SCLK

signal at the in active state. With SPI Mode 0 and 3, data is always latched in on the rising

edge of SCLK and always output on the falling edge of SCLK.

 There are only two data lines used between SPI devices. So, it is necessary to define

OP-Code. W5100 uses two types of OP-Code - Read OP-Code and Write OP-Code. Except

for those two OP-Codes, W5100 will be ignored and no operation will be started. In SPI

- -bit stream is composed of

1 byte OP-Code Field, 2 bytes Address Field and 1 byte data Field. OP-Code, Address and

data bytes are transferred with the most significant bit (MSB) first and least significant

bit(LSB) last. In other words, the first bit of SPI data is MSB of OP-Code Field and the last

bit of SPI data is LSB of Data-Field.

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

18

 Figure: 4.1 Device Operations

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

19

Chapter 5

Layout Details
5.1 Top layout

Figure: 5.1 Top layout

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

20

5.2 Bottom Layout

Figure: 5.2 Bottom Layout

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

21

Chapter 6

Hardware Design

6.1 Power Supply

 In our project we have used three different voltages .These are 1.2V, 2.5V and 3.3V.

6.1.1 Power Jack

Figure: 6.1 Power Jack

6.1.2 1.2V Supply

Figure: 6.2 1.2V Supply

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

22

6.1.3 2.5V Supply

Figure: 6.3 2.5V Supply

6.1.4 3.3V Supply

Figure: 6.4 3.3V Supply

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

23

6.2 PROM

Figure: 6.5 PROM
 We will be using 4MB PROM.

6.3 RESETS

6.3.1 Reset

Figure: 6.6 Reset

This reset is located on target board. This reset is utilized for the target board.

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

24

 6.3.2 Config Reset

Figure: 6.7 Config Reset

Config reset is used on controller board. It is used when a new program is needed to be

downloaded in target FPGA board.

6.4 Clock Circuit

Figure: 6.8 Clock Circuit

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

25

6.5 SWITCHES

Figure: 6.9 Switches

6.6 LED

Figure: 6.10 LED

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

26

6.7 RS232

RS232 Standards

To allow compatibility among data communication equipment made by various

manufactures, An interfacing standard called RS232 was set by the Electronics Industries

Association (EIA) in 1960. In 1963 it was modified and called RS232A. RS232B and

RS232C were issued in 1965 and 1969, respectively. Here we refer it simply as RS232.

Today, RS232 is the most widely used serial I/O interfacing standard. This standard is used

on PCs and numerous types of equipment. However, since the standard was set long before

the advent of TTL login family, its input and output voltage levels are not TTL compatible.

In RS232, a 1 is represented by -3 to -25 V, while a 0 bit is +3V to +25V, making -3 to +3

undefined. For this reason, to connect any RS232 to a microcontroller system we must use

voltage converter such as MAX3232 to convert the TTL logic levels to the RS232 voltage

level, and vice versa. MAX3232 IC chip are commonly referred to as line drivers.

RS232 pins

IBM introduced the DB-9 version of the serial I/O standard, which uses 9 pins only.

The DB-9 pins are as shown below.

 Pin
Description

1. Data carrier detect (DCD)

2. Receiver data (RxD)

3. Transmitted data(TxD)

4. Data terminal ready(DTR)

5. Signal Ground(GND)

6. Data set ready(DSR)

7. Request to send(RTS)

8. Clear to send(CTS)

 9. Ring indicator(RI)

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

27

Figure: 6.11 RS 232

Figure: 6.12 RS 232 CONN

 RS232 has been used which is optional. It has been used for testing purpose.

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

28

6.8 EHERNET

 Figure: 6.13 Ethernet

This Ethernet module has been used to mount WIZnet 5100 IC.

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

29

6.9 LCD

 Figure: 6.14 LCD

6.10 JTAG

 Figure: 6.15 JTAG

JTAG is used for programming into PROM which is located on Controller FPGA board.

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

30

Chapter 7

Software Design

Picoblaze

 The PicoBlaze microcontroller is a compact, capable, and cost-effective fully

embedded 8-bit RISC microcontroller core optimized for the Xilinx FPGA families. In

typical implementations, a single FPGA block RAM stores up to 1024 program instructions,

which are automatically loaded during FPGA configuration. Even with such resource

efficiency, the PicoBlaze microcontroller performs a respectable 44 to 100 million

instructions per second (MIPS) depending on the target FPGA family and speed grade.

 The PicoBlaze microcontroller core is totally embedded within the target FPGA and

requires no external resources. The PicoBlaze microcontroller is extremely flexible. The basic

functionality is easily extended and enhanced by connecting additional FPGA logic to the

 input and output ports. The PicoBlaze microcontroller provides abundant,

flexible I/O at much lower cost than off-the-shelf controllers. Similarly, the PicoBlaze

peripheral set can be customized to meet the specific features, function, and cost requirements

of the target application. Because the PicoBlaze microcontroller is delivered as synthesizable

VHDL source code, the core is future-proof and can be migrated to future FPGA

architectures, effectively eliminating product obsolescence fears. Being integrated within the

FPGA, the PicoBlaze microcontroller reduces board space, design cost, and inventory.

7.1 PicoBlaze Microcontroller Features

The PicoBlaze microcontroller supports the following features:

 16 byte-wide general-purpose data registers

 1K instructions of programmable on-chip program store, automatically loaded during

 FPGA configuration

 Byte-wide Arithmetic Logic Unit (ALU) with CARRY and ZERO indicator flags

 64-byte internal scratchpad RAM

 256 input and 256 output ports for easy expansion and enhancement

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

31

Automatic 31-location CALL/RETURN stack

 100 MIPS in a Virtex-II Pro FPGA

-case 5 clock cycles

r Xilinx Spartan-3 architecture just 96 slices and 0.5 to 1 block RAM

-6, and Virtex-6 FPGA architectures

-set simulator support

7.2 Why PicoBlaze Microcontroller?

 There are literally dozens of 8-bit microcontroller architectures and instruction sets.

Modern FPGAs can efficiently implement practically any 8-bit microcontroller, and available

FPGA soft cores support popular instruction sets such as the PIC, 8051, AVR, 6502, 8080,

and Z80 microcontrollers. Why use the PicoBlaze microcontroller instead of a more popular

instruction set? The PicoBlaze microcontroller is specifically designed and optimized for the

Spartan-3 family and with support for Spartan-6 and Virtex-6 FPGA architectures. Its

compact yet capable architecture consumes considerably less FPGA resources than

comparable 8-bit microcontroller architectures within an FPGA. Furthermore, the PicoBlaze

microcontroller is provided as a free, source-level VHDL file with royalty-free re-use within

Xilinx FPGAs. Some standalone microcontroller variants have a notorious reputation for

becoming obsolete. Because it is delivered as VHDL source, the PicoBlaze microcontroller is

immune to product obsolescence as the microcontroller can be retargeted to future

generations of Xilinx FPGAs, exploiting future cost reductions and feature enhancements.

Furthermore, the PicoBlaze microcontroller is expandable and extendable.

 Before the advent of the PicoBlaze and MicroBlaze embedded processors, the

microcontroller resided externally to the FPGA, limiting the connectivity to other FPGA

functions and restricting overall interface performance. By contrast, the PicoBlaze

microcontroller is fully embedded in the FPGA with flexible, extensive on-chip

connectivity to other FPGA resources. Signals remain within the FPGA, improving overall

performance. The PicoBlaze microcontroller reduces system cost because it is a single-chip

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

32

solution, integrated within the FPGA and sometimes only occupying leftover FPGA

resources. The PicoBlaze microcontroller is resource efficient. Consequently, complex

applications are sometimes best portioned across multiple PicoBlaze microcontrollers with

each controller implementing a particular function, e.g, keyboard and display control, or

system management.

7.3 Why Use a Microcontroller within an FPGA?

 Microcontrollers and FPGAs both successfully implement practically any digital

logic function. However, each has unique advantages in cost, performance, and ease of use.

Microcontrollers are well suited to control applications, especially with widely changing

requirements. The FPGA resources required to implement the microcontroller are relatively

constant. The same FPGA logic is re-used by the various microcontroller instructions,

conserving resources. The program memory requirements grow with increasing complexity.

Programming control sequences or state machines in assembly code is often easier than

creating similar structures in FPGA logic.

 Microcontrollers are typically limited by performance. Each instruction executes

sequentially. As the application increases in complexity, the number of instructions required

to implement the application grows and system performance decreases accordingly. By

contrast, performance in an FPGA is more flexible. For example, an algorithm can be

implemented sequentially or completely in parallel, depending on the performance

requirements. A completely parallel implementation is faster but consumes more FPGA

resources. A microcontroller embedded within the FPGA provides the best of both worlds.

The microcontroller implements non-timing crucial complex control functions while timing-

critical or data path functions are best implemented using FPGA logic. For example, a

microcontroller cannot respond to events much faster than a few microseconds. The FPGA

logic can respond to multiple, simultaneous events in just a few to tens of nanoseconds.

Conversely, a microcontroller is cost-effective and simple for performing format or

protocol conversions.

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

33

Table: 7.1 PicoBlaze Vs FPGA

7.4 PicoBlaze functional blocks

Figure: 7.1 PicoBlaze Embedded Microcontroller Block Diagram

Features:

General-Purpose Registers

The PicoBlaze microcontroller includes 16 byte-wide general-purpose registers, designated

as registers s0 through sF. For better program clarity, registers can be renamed using an

assembler directive. All register operations are completely interchangeable; no registers are

reserved for special tasks or have priority over any other register. There is no dedicated

accumulator; each result is computed in a specified register.

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

34

1,024-Instruction Program Store

The PicoBlaze microcontroller executes up to 1,024 instructions from memory within the

FPGA, typically from a single block RAM. Each PicoBlaze instruction is 18 bits wide. The

instructions are compiled within the FPGA design and automatically loaded during the

FPGA configuration process. Other memory organizations are possible to accommodate

more PicoBlaze controllers within a single FPGA or to enable interactive code updates

without recompiling the FPGA design.

Arithmetic Logic Unit (ALU)

The byte-wide Arithmetic Logic Unit (ALU) performs all microcontroller calculations,

including:

Basic arithmetic operations such as addition and subtraction

Bitwise logic operations such as AND, OR, and XOR

Arithmetic compare and bitwise test operations

Comprehensive shift and rotate operations

All operations are performed using an operand provided by any specified register (sX).

The result is returned to the same specified register (sX). If an instruction requires a second

operand, then the second operand is either a second register (sY) or an 8-bit immediate

constant (kk).

Flags

ALU operations affect the ZERO and CARRY flags. The ZERO flag indicates when the

result of the last operation resulted in zero. The CARRY flag indicates various conditions,

depending on the last instruction executed.

The INTERRUPT_ENABLE flag enables the INTERRUPT input.

64-Byte Scratchpad RAM

The PicoBlaze microcontroller provides an internal general-purpose 64-byte scratchpad

RAM, directly or indirectly addressable from the register file using the STORE and FETCH

instructions. The STORE instruction writes the contents of any of the 16 registers to any of

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

35

the 64 RAM locations. The complementary FETCH instruction reads any of the 64 memory

locations into any of the 16 registers. This allows a much greater number of variables to be

held within the boundary of the processor and tends to reserve all of the I/O space for real

inputs and output signals. The six-bit scratchpad RAM address is specified either directly

(ss) with an immediate constant, or indirectly using the contents of any of the 16 registers

(sY). Only the lower six bits of the address are used; the address should not exceed the 00 - 3F

range of the available memory.

Input/Output

microcontroller to connect to a custom peripheral set or to other FPGA logic. The PicoBlaze

microcontroller supports up to 256 input ports and 256 output ports or a combination of

input/output ports. The PORT_ID output provides the port address. During an INPUT

operation, the PicoBlaze microcontroller reads data from the IN_PORT port to a specified

register, sX. During an OUTPUT operation, the PicoBlaze microcontroller writes the

contents of a specified register, sX, to the OUT_PORT port.

Program Counter (PC)

The Program Counter (PC) points to the next instruction to be executed. By default, the PC

automatically increments to the next instruction location when executing an instruction.

Only the JUMP, CALL, RETURN, and RETURNI instructions and the Interrupt and Reset

Events modify the default behavior. The PC cannot be directly modified by the application

code; computed jump instructions are not supported.

The 10-bit PC supports a maximum code space of 1,024 instructions (000 to 3FF hex). If the

PC reaches the top of the memory at 3FF hex, it rolls over to location 000.

Program Flow Control

The default execution sequence of the program can be modified using conditional and non-

conditional program flow control instructions.

The JUMP instructions specify an absolute address anywhere in the 1,024-instruction

program space.

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

36

CALL and RETURN instructions provide subroutine facilities for commonly used sections of

code. A CALL instruction specifies the absolute start address of a subroutine, while the

return address is automatically preserved on the CALL/RETURN stack.

If the interrupt input is enabled, an Interrupt Event also preserves the address of the

preempted instruction on the CALL/RETURN stack while the PC is loaded with the

interrupt vector, 3FF hex. Use the RETURNI instruction instead of the RETURN instruction

to return from the interrupt service routine (ISR).

CALL/RETURN Stack

The CALL/RETURN hardware stack stores up to 31 instruction addresses, enabling

nested CALL sequences up to 31 levels deep. Since the stack is also used during an

interrupt operation, at least one of these levels should be reserved when interrupts are

enabled.

The stack is implemented as a separate cyclic buffer. When the stack is full, it overwrites the

oldest value. Consequently, there are no instructions to control the stack or the stack pointer.

No program memory is required for the stack.

Interrupts

The PicoBlaze microcontroller has an optional INTERRUPT input, allowing the PicoBlaze

microcontroller to handle asynchronous external events. In this context,

relates to interrupts occurring at any time during an instruction cycle. However,

recommended design practice is to synchronize all inputs to the PicoBlaze controller using

the clock input. The PicoBlaze microcontroller responds to interrupts quickly in just five

clock cycles.

Reset

The PicoBlaze microcontroller is automatically reset immediately after the FPGA

configuration process completes. After configuration, the RESET input forces the processor

into the initial state. The PC is reset to address 0, the flags are cleared, interrupts are

disabled, and the CALL/RETURN stack is reset. The data registers and scratchpad RAM are

not affected by Reset.

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

37

7.5 Source Code

Source Code Platform:

 Pico-blaze assembly language will be used on the controller board. Pico-blaze assembler

will be used to obtain the respective .vhdl file.

Source code purpose:

The following source code is controlling the communication between the Ethernet module

and controller board FPGA and also communication between target FPGA and source

FPGA board.

Following is the source code for initialization of W5100 IC

LED_VERIFY DSOUT 5
MISO DSIN 4
MOSI DSOUT 9 ; ---------SPI
CS DSOUT 8 ; ---------SPI
CLK DSOUT 7 ; ---------SPI
eth_reset DSOUT 10
CCLK DSOUT 0
D_IN DSOUT 1
prog DSOUT 2
init_b DSIN 6
done DSIN 7
RX_DATA DSIN 5
SW DSIN 8
TX_DATA DSOUT 3
TX_ENABLE DSOUT 4
; ----------------------------- REGISTERS ------------------------- ;
TEMP1 EQU s0
TEMP2 EQU s1
TEMP3 EQU s2
REG EQU s3
DATA EQU s4
CNTR1 EQU s5
CNTR2 EQU s6
SPI_REG EQU s7
ADDR1 EQU s8 ; LSB ADDRESS
ADDR2 EQU sD
ADDR3 EQU sA
TEMP EQU sB
 ; ----------------------- CONSTANS - INSTRUCTIONS ------------------;
; ---------------------------- RAM LOCATIONS -----------------------;

save_s2 EQU 58

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

38

save_s3 EQU 57
save_s4 EQU 56
TX_FLAG EQU 51
TEMP_FLAG EQU 40
UR_DATA_RAM EQU 0
A_1 EQU $41
B_1 EQU $42
C_1 EQU $43
D_1 EQU $44
E_1 EQU $45
F_1 EQU $46
G_1 EQU $47
H_1 EQU $48
I_1 EQU $49
J_1 EQU $4A
K_1 EQU $4B
L_1 EQU $4C
M_1 EQU $4D
N_1 EQU $4E
O_1 EQU $4F
P_1 EQU $50
Q_1 EQU $51
R_1 EQU $52
S_1 EQU $53
T_1 EQU $54
U_1 EQU $55
V_1 EQU $56
W_1 EQU $57
X_1 EQU $58
Y_1 EQU $59
Z_1 EQU $5A
BLK_1 EQU $20
CALL PROG_B
IN REG, SW
TEST REG, 1
JUMP Z, ABC
JUMP asd
ABC:
EINT
STOP: JUMP STOP
asd:
; load data,$FF
; out data,LED_VERIFY
;
 LOAD data, $00
 OUT data, eth_reset
 CALL DELAY_SMALL

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

39

 LOAD data, $FF
 OUT data, eth_reset
sssst:
 LOAD ADDR2, 0
 LOAD ADDR1, 0
 LOAD DATA, 1 ; 144
 CALL spi_write
; ;;;;;;;;;;;;;;;;;
 LOAD ADDR2, 1 ;;;;;;Gateway IP Address
 LOAD ADDR1, 0
 LOAD DATA, 192
 CALL spi_write
 LOAD ADDR2, 2
 LOAD ADDR1, 0
 LOAD DATA, 168
 CALL spi_write
 LOAD ADDR2, 3
 LOAD ADDR1, 0
 LOAD DATA, 0 ; 1
 CALL spi_write
 LOAD ADDR2, 4
 LOAD ADDR1, 0
 LOAD DATA, 1
 CALL spi_write; ;;;;;;;;;;;;;;;;;;;;;
 LOAD ADDR2, 5 ;;;Subnet Mask
 LOAD ADDR1, 0
 LOAD DATA, 255
 CALL spi_write
 LOAD ADDR2, 6
 LOAD ADDR1, 0
 LOAD DATA, 255
 CALL spi_write
 LOAD ADDR2, 7
 LOAD ADDR1, 0
 LOAD DATA, 255
 CALL spi_write
 LOAD ADDR2, 8
 LOAD ADDR1, 0
 LOAD DATA, 0
 CALL spi_write; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 LOAD ADDR2, 9 ;;;;;;Source Hardware Address
 LOAD ADDR1, 0
 LOAD DATA, 0
 CALL spi_write
 LOAD ADDR2, 10
 LOAD ADDR1, 0
 LOAD DATA, 8

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

40

 CALL spi_write
 LOAD ADDR2, 11
 LOAD ADDR1, 0
 LOAD DATA, $DC
 CALL spi_write
 LOAD ADDR2, 12
 LOAD ADDR1, 0
 LOAD DATA, 1
 CALL spi_write
 LOAD ADDR2, 13
 LOAD ADDR1, 0
 LOAD DATA, 2
 CALL spi_write
 LOAD ADDR2, 14
 LOAD ADDR1, 0
 LOAD DATA, 3
 CALL spi_write ;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 LOAD ADDR2, $0F ;;;;;;;Source IP Address
 LOAD ADDR1, 0
 LOAD DATA, 192
 CALL spi_write
 LOAD ADDR2, $10
 LOAD ADDR1, 0
 LOAD DATA, 168
 CALL spi_write
 LOAD ADDR2, $11
 LOAD ADDR1, 0
 LOAD DATA, 0 ; 1
 CALL spi_write
 LOAD ADDR2, $12
 LOAD ADDR1, 0
 LOAD DATA, 9
 CALL spi_write ;;;;;;;;;;;;;;;;;;;;;;
 LOAD ADDR2, $01 ; open
 LOAD ADDR1, 4
 LOAD DATA, $01
 CALL spi_write;
 LOAD ADDR2, $1A ; rx_mem size
 LOAD ADDR1, 0
 LOAD DATA, $06 ; 4kb
 CALL spi_write
 LOAD ADDR2, $1B ; tx_mem size
 LOAD ADDR1, 0
 LOAD DATA, $55 ; 06
 CALL spi_write
 LOAD ADDR2, $00 ; port 0 is tcp
 LOAD ADDR1, 4

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

41

 LOAD DATA, 1
 CALL spi_write
 LOAD ADDR2, $01 ; LISTEN
 LOAD ADDR1, 4
 LOAD DATA, 2
 CALL spi_write
 LOAD ADDR2, $04 ; Socket Source Port
 LOAD ADDR1, 4
 LOAD DATA, $13
 CALL spi_write
 LOAD ADDR2, $05 ; Socket Source Port
 LOAD ADDR1, 4
 LOAD DATA, $88
 CALL spi_write
 LOAD ADDR2, $12
 LOAD ADDR1, $04
 LOAD DATA, $05
 CALL spi_write
 LOAD ADDR2, $13
 LOAD ADDR1, $04
 LOAD DATA, $B4
 CALL spi_write
 LOAD ADDR2, $20
 LOAD ADDR1, $04
 LOAD DATA, $08
 CALL spi_write
 LOAD ADDR2, $21
 LOAD ADDR1, $04
 LOAD DATA, $00
 CALL spi_write
 LOAD ADDR2, $26
 LOAD ADDR1, $04
 LOAD DATA, $08
 CALL spi_write
 LOAD ADDR2, $27
 LOAD ADDR1, $04
 LOAD DATA, $00
 CALL spi_write
 LOAD ADDR2, $16 ; LISTEN
 LOAD ADDR1, $00
 LOAD DATA, $01
 CALL spi_write
 LOAD reg, 0
 STORE reg, 7
data_rcv_int:
 LOAD ADDR2, $02
 LOAD ADDR1, $04

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

42

; load DATA,$01
 CALL spi_read
 OUT data, LED_VERIFY
 TEST data, 1
 JUMP Z, data_rcv_int
; CALL CONNECTED
data_rcv_intS:
 LOAD ADDR2, $02
 LOAD ADDR1, $04
; load DATA,$01
 CALL spi_read
 OUT data, LED_VERIFY
 TEST data, 4
 JUMP Z, data_rcv_intS
; CALL big_DELAY
; CALL big_DELAY
 LOAD ADDR2, $15 ; LISTEN
 LOAD ADDR1, $00
 CALL spi_read
 OUT data, LED_VERIFY
 TEST data, 1
 JUMP Z, data_rcv_intS
; CALL big_DELAY
; CALL big_DELAY
; CALL big_DELAY
; CALL big_DELAY
; CALL big_DELAY
 LOAD ADDR2, $26 ; no of byte rcvd
 LOAD ADDR1, $04 ; Sn_RX_RSR
 CALL spi_read
 STORE data, 62
 LOAD ADDR2, $27 ; no of byte rcvd
 LOAD ADDR1, $04 ; Sn_RX_RSR
 CALL spi_read
 STORE data, 63
; call data_rcv_intS12
sdf: LOAD ADDR2, $26 ; no of byte rcvd
 LOAD ADDR1, $04 ; Sn_RX_RSR
 CALL spi_read
 COMP data, $10
 JUMP NZ, sdf
 STORE data, 62
; STORE data, TX_FLAG
; CALL DATA_232
 LOAD ADDR2, $27 ; no of byte rcvd
 LOAD ADDR1, $04 ; Sn_RX_RSR
 CALL spi_read

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

43

 STORE data, 63
; STORE data, TX_FLAG
; CALL DATA_232
 LOAD ADDR2, $28 ; Sn_RX_RD
 LOAD ADDR1, $04
 CALL spi_read
 STORE data, 30
; STORE data, TX_FLAG
; CALL DATA_232
 LOAD ADDR2, $29 ; Sn_RX_RD
 LOAD ADDR1, $04
 CALL spi_read
; STORE data, TX_FLAG
; CALL DATA_232
 STORE data, 31
 FETCH temp1, 30
 FETCH data, 21 ; 62
 ADD temp1, data
 STORE temp1, 30
 FETCH temp1, 31
 FETCH data, 22 ; 63
 ADD temp1, data
 STORE temp1, 31
; STORE data, TX_FLAG
; CALL DATA_232
 LOAD ADDR2, $02
 LOAD ADDR1, $04
 LOAD data, $FF
 CALL spi_write
 FETCH data, 30
 AND data, $0F ; gSn_RX_MASK
 STORE data, 2 ; get_offset
 FETCH data, 31
 AND data, $FF ; gSn_RX_MASK
 STORE data, 3 ; get_offset
 FETCH temp1, 2
 FETCH temp2, 3
 ADD temp2, 0
 ADD temp1, $60
 STORE temp1, 2 ; get_start_address
 STORE temp2, 3 ; get_start_address
 FETCH ADDR2, 3
 FETCH ADDR1, 2
; ADD ADDR1, 2
 FETCH temp1, 62
 FETCH temp2, 63
 STORE temp1, 21

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

44

 STORE temp2, 22
tp:
 CALL spi_read
; STORE data, TX_FLAG
; CALL DATA_232
 LOAD SPI_REG, DATA
 CALL CONFIG_DATA
 FETCH ADDR2, 3
 FETCH ADDR1, 2
 ADD addr2, 1
 ADDC addr1, 0
 STORE ADDR2, 3
 STORE ADDR1, 2
; fetch temp1,62
; fetch temp2,63
;
; FETCH temp1, 62
 FETCH temp2, 63;
 SUB temp2, 1
 SUBC temp1, 0;
 STORE temp1, 62
 STORE temp2, 63
 COMP temp2, 0
 JUMP Z, tt6
 JUMP ag88;
tt6:
 COMP temp1, 0
 JUMP Z, asd15
;
;
ag88:
 JUMP tp
asd15:

 LOAD ADDR2, 0
 LOAD ADDR1, 0
 LOAD DATA, 128 ; 144
 CALL spi_write
 LOAD ADDR2, $28 ; Sn_RX_RD
 LOAD ADDR1, $04
 CALL spi_read
 STORE data, 30
 LOAD ADDR2, $29 ; Sn_RX_RD
 LOAD ADDR1, $04
 CALL spi_read
 STORE data, 31
 FETCH data, 30

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

45

 AND data, $0F ; gSn_RX_MASK
 STORE data, 2 ; get_offset
 FETCH data, 31
 AND data, $FF ; gSn_RX_MASK
 STORE data, 3 ; get_offset
 LOAD ADDR2, $26 ; no of byte rcvd
 LOAD ADDR1, $04 ; Sn_RX_RSR
 CALL spi_read
 STORE data, 62
 LOAD ADDR2, $27 ; no of byte rcvd
 LOAD ADDR1, $04 ; Sn_RX_RSR
 CALL spi_read
 STORE data, 63
;
 JUMP sssst
askjd: JUMP askjd
DATA_232:
 FETCH TEMP1, TX_FLAG
 OUT TEMP1, TX_DATA
 LOAD TEMP1, $FF
 OUT TEMP1, TX_ENABLE
; CALL DELAY_SMALL
; CALL DELAY_SMALL
 CALL DELAY_SMALL
 CALL DELAY_SMALL
 CALL DELAY_SMALL
; CALL DELAY
 LOAD TEMP1, $00
 OUT TEMP1, TX_ENABLE
 CALL DELAY
; CALL DELAY_SMALL
 CALL DELAY_SMALL
 CALL DELAY_SMALL
 RET
; RET
; --------------------------- WRITE status register ----------------------------
spi_write: LOAD temp, 0
 OUT temp, cs
 LOAD cntr1, 0
 LOAD SPI_REG, $F0 ; REN
 CALL spi_tx
 LOAD SPI_REG, ADDR1
 CALL spi_tx
 LOAD SPI_REG, ADDR2
 CALL spi_tx
 LOAD SPI_REG, DATA
 CALL spi_tx

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

46

 LOAD temp, 1
 OUT temp, cs
 RET
spi_read: LOAD temp, 0
 OUT temp, cs
 LOAD cntr1, 0
 LOAD SPI_REG, $0F ; WREN
 CALL spi_tx
 LOAD SPI_REG, ADDR1
 CALL spi_tx
 LOAD SPI_REG, ADDR2
 CALL spi_tx
; LOAD SPI_REG, DATA
; CALL spi_tx
 CALL spi_rx
 LOAD temp, 1
 OUT temp, cs
 RET
spi_tx: OUT SPI_REG, MOSI ;
 CALL clk_pulse ; SET
 SL0 SPI_REG ;
 ADD cntr1, 1 ;
 COMP cntr1, 8 ;
 JUMP C, spi_tx ;
 LOAD cntr1, 0 ;
 RET ;
; ----------------------------receive --

spi_rx: IN SPI_REG, MISO ;
 CALL clk_pulse
 SL0 SPI_REG
 SLA data
 ADD cntr1, 1
 COMP cntr1, 8
 JUMP C, spi_rx
 LOAD cntr1, 0
 RET
; ---
clk_pulse: LOAD temp, 1 ;;;;;;
 OUT temp, clk
 LOAD temp, 0
 OUT temp, clk
 RET
big_DELAY: STORE s2, save_s2
 STORE s3, save_s3
 LOAD s2, $FA
 LOAD s3, 10

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

47

 CALL DELAY_large
WAIT33: SUB s2, 1
 JUMP NZ, WAIT33
 SUB s3, 1
 LOAD s2, $FA
 JUMP NZ, WAIT33
 FETCH s2, save_s2
 FETCH s3, save_s3
 RET
DELAY: STORE s2, save_s2
 STORE s3, save_s3
 LOAD s2, $FA
 LOAD s3, 10 ; L7;
WAIT: SUB s2, 1
 JUMP NZ, WAIT
 SUB s3, 1
 LOAD s2, $FA
 JUMP NZ, WAIT
 FETCH s2, save_s2
 FETCH s3, save_s3
 RET
DELAY_large: STORE s6, save_s4
 LOAD s6, 7
WAIT2: CALL DELAY
 SUB s6, 1
 JUMP NZ, WAIT2
 FETCH s6, save_s4
 RET
DELAY_SMALL: STORE s6, save_s2
 LOAD s6, 200
WAIT3: SUB s6, 1
 JUMP NZ, WAIT3
 FETCH s6, save_s2
 RET
CONNECTED:
 LOAD TEMP1, C_1
 STORE TEMP1, TX_FLAG
 CALL DATA_232
 LOAD TEMP1, O_1
 STORE TEMP1, TX_FLAG
 CALL DATA_232
 LOAD TEMP1, N_1
 STORE TEMP1, TX_FLAG
 CALL DATA_232
 LOAD TEMP1, N_1
 STORE TEMP1, TX_FLAG
 CALL DATA_232

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

48

 LOAD TEMP1, E_1
 STORE TEMP1, TX_FLAG
 CALL DATA_232
 LOAD TEMP1, C_1
 STORE TEMP1, TX_FLAG
 CALL DATA_232
 LOAD TEMP1, T_1
 STORE TEMP1, TX_FLAG
 CALL DATA_232
 LOAD TEMP1, E_1
 STORE TEMP1, TX_FLAG
 CALL DATA_232
 LOAD TEMP1, D_1
 STORE TEMP1, TX_FLAG
 CALL DATA_232
 RET
PROG_B:
 LOAD temp1, $00
 OUT temp1, prog
 LOAD temp1, $FF
 OUT temp1, prog
 RET
data_rcv_intS12:
 LOAD ADDR2, $02
 LOAD ADDR1, $04
 CALL spi_read
 OUT data, LED_VERIFY
 TEST data, 4
 JUMP NZ, data_rcv_intS12
 RET
CCLK_pulse: LOAD temp, 1 ;;;;;;
 OUT temp, CCLK
 LOAD temp, 0
 OUT temp, CCLK
 RET
CONFIG_DATA: OUT SPI_REG, D_IN ;
 CALL CCLK_pulse ; SET
 SL0 SPI_REG ;
 ADD cntr1, 1 ;
 COMP cntr1, 8 ;
 JUMP C, CONFIG_DATA ;
 LOAD cntr1, 0 ;
 RET ;
CHK_STR:
 COMP SPI_REG, $2A
 JUMP NZ, ISR
 LOAD REG, 78

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

49

 STORE REG, TEMP_FLAG
 CALL PROG_B
 JUMP ISR
ISR1:
 IN SPI_REG, RX_DATA
 OUT SPI_REG, LED_VERIFY
; FETCH REG, TEMP_FLAG
; COMP REG, 78
; JUMP NZ, CHK_STR
 CALL CONFIG_DATA
; IN REG, done
; TEST REG, 1
; JUMP NZ, ISR
; LOAD REG, 0
; STORE REG, TEMP_FLAG

ISR: ; CALL UR_DATA ; ------------- ;----
INTRUPT
 RETI ENABLE
 ORG $3FF
 JUMP ISR1

FLOW CHART:

Figure: 7.2 Flow Chart of W5100 in Server mode

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

50

Chapter 8

Experimentation

TESTING

After discussing the design details above the board is tested to verify the proper

functioning of the system. Following are the results :

8.1 Initialization of W5100

Figure: 8.1 Initialization of W5100

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

51

8.2 FPGA Configuration

I)

Figure: 8.2 FPGA configuration I

II)

Figure: 8.3 FPGA configuration II

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

52

8.3 Procedure

Step 1

Step 2

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

53

Step 3

Step 4

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

54

Step 5

Step 6

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

55

Step 7

Step 8

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

56

Step 9

Step 10

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

57

Step 11
Converting .mcs file to .hex file

Step 12

Finally transferring data by providing IP address of Controller board

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

58

Chapter 9

Conclusion

We Can Configure Remotely placed FPGA using Slave Serial Mode and Ethernet IC

W5100.

9.1 Benefit of Work
 It provides a more efficient use of utilizing a single FPGA board for

hardware simulation. It could also place itself in educational establishments where

the prototyping board does not need to be changed from workstation to workstation and

also provides an efficient way of managing expensive FPGA resources. Now a day, this

type of multi-user FPGA board use has much further development until it becomes a

viable multi-user hardware simulation environment.

 Such a strategy would bring benefits to FPGA rapid prototyping engineers,

engineers changing workstations or on the move, and distributed design teams posted

around the globe. It could also place itself in educational establishments where the

prototyping board does not need to be changed from workstation to workstation and also

provides an efficient way of managing expensive FPGA resources.

9.2 Final Results

 Different programs can be run on target FPGA board. Following are the two

application oriented programs that has been successfully implemented and verified using

this project.

I) Traffic light Controller(TLC)

Following is the source code for the same using VHDL language:

library ieee;
use ieee.std_logic_1164.all;

ENTITY traffic_light IS
 PORT(sensor : IN std_logic;
 clock : IN std_logic;
 red_light : OUT std_logic;
 green_light : OUT std_logic;

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

59

 yellow_light : OUT std_logic);
END traffic_light;

ARCHITECTURE simple OF traffic_light IS
 TYPE t_state is (red, green, yellow);
 SIGNAL present_state, next_state : t_state;
BEGIN
 PROCESS(present_state, sensor)
 BEGIN
 CASE present_state IS
 WHEN green =>
 next_state <= yellow;
 red_light <= '0';
 green_light <= '1';
 yellow_light <= '0';
 WHEN red =>
 red_light <= '1';
 green_light <= '0';
 yellow_light <= '0';
 IF (sensor = '1') THEN
 next_state <= green;
 ELSE
 next_state <= red;
 END IF;
 WHEN yellow =>
 red_light <= '0';
 green_light <= '0';
 yellow_light <= '1';
 next_state <= red;
 END CASE;
 END PROCESS;

 PROCESS
 BEGIN
 WAIT UNTIL clock'EVENT and clock = '1';
 present_state <= next_state;
 END PROCESS;
END simple;

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

60

Figure: 9.1 Testbench Waveform for TLC

II) 64 Bit RAM(16*4)

Following is the source code for the same using VHDL language:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;
ENTITY ram IS
 GENERIC
 (
 ADDRESS_WIDTH : integer := 4;
 DATA_WIDTH : integer := 8
);
 PORT
 (
 clock: IN std_logic;
 data: IN std_logic_vector(DATA_WIDTH - 1 DOWNTO 0);
 write_address: IN std_logic_vector(ADDRESS_WIDTH - 1
DOWNTO 0);
 read_address: IN std_logic_vector(ADDRESS_WIDTH - 1
DOWNTO 0);
 we: IN std_logic;
 q: OUT std_logic_vector(DATA_WIDTH - 1 DOWNTO 0)
);
END ram;
ARCHITECTURE rtl OF ram IS
 TYPE RAM IS ARRAY(0 TO (2 ** ADDRESS_WIDTH)-1) OF
std_logic_vector(DATA_WIDTH - 1 DOWNTO 0);
 SIGNAL ram_block : RAM;
BEGIN
 PROCESS (clock)
 BEGIN

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

61

 IF (clock'event AND clock = '1') THEN
 IF (we = '1') THEN
 ram_block(to_integer(unsigned(write_address))) <= data;
 q<="00000000";
 END IF;
 q <= ram_block(to_integer(unsigned(read_address)));
 END IF;
 END PROCESS;
END rtl;

Figure: 9.2 Testbench waveform for RAM

99..33 CCOOMMPPOONNEENNTT CCOOSSTTIINNGG

S.No. Component Name Cost (Rs) Quantity

1. Ethernet Module 4000 1

2. FPGA 1000 2

3. PCB 800 2

4. Casing 400 1

5. PROM 300 1

6. Power Supply 250 2

7. LCD 200 1

8. MAX 3232 100 1

9. DB 9 Pin 50 1

10. LM 317 35 6

11. Miscellaneous 500 1

Total : Rs. 9860/-

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

62

99..44 FFUUTTUURREE SSCCOOPPEE

 Future work, include the management of multiple boards and modules on a

rack with only one TCP/IP address or Wi-Fi/ Wi-Max. This would allow remote

control of a rack in a laboratory. If two or more users are waiting for a board and there

are f u r t h e r constant requests for hardware c o - simulation, the assignment of the

next user is very much random and there is the possibility for a user never to a c q u i r e

t h e board a n d t o a l w a y s be queuing means Deadlock can be there.

 To avoiding these problems w e c a n use d i f f e r e n t available protocols

supported by this process. This is currently unacceptable so therefore some sort

of queuing stack needs to be implemented. Further milestones include queuing of

multiple hardware co-simulations with an option for priorities and also batch

processing of models. Early work also continues on the use of FPGA device

management, whereby devices on a board populated with many FPGAs can be targeted

individually.

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

63

References:

I) Books:

VHDL Primer by J. Bhaskar,3rd edition, Prentice Hall .

II) Papers:

[1] Fallside, Sm In Proceedings of the IEEE Symposium

on Field-Programmable Custom Computing Machines, Napa Valley, USA, April

2000.

[2] Brebner, G., Diessel, O., -Based Reconfigurable Task In

Proceedings of the 11th International Conference on Field Programmable Logic

2001, Belfast, Northern Ireland, August 2001.

[3] Jim Burns,

 in the 5th Annual IEEE Symposium on FPGAs for

Custom Computing Machines, 1997 Proceedings.

[4] of FPGA soft

Test Eur. Conf., Mar. 2005, pp. 18-23. [13] R. Scrofano, S. Choi, and V. K. Prasanna,

 and programmable processors for matrix m

in Proc. Int. Conf. Field Programmable Technol., Dec. 2002, pp. 422-425.

[5] Hardware-Software Co synthesis of Low-Power Real-Time Distributed

Embedded Systems With Dynamically Reconfigurable FPGAs IEEE Transactions

Computer-Aided Design of Integrated Circuits and Systems, VOL. 26, NO. 3, MARCH

2007

[6] Piyush Kumar Shukla, Dr.S.Silakari, Dr.Sarita.S.Bhadoria, Multi-

User FPGA - An Efficient Way of Managing Expensive FPGA Resources Using

TCP/IP, Wi-Max/ Wi-Fi in a Proceedings

of the 15th IEEE International Workshop on Rapid System Prototyping

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

64

[7] Daniel Denning, James Irvine, Derek Stark, Malachy Devlin Multi-User FPGA Co-

Proceedings of the IEEE International Conference on

Field-Programmable Custom Computing Machines.

III) WEB Reference:

 [1] PicoBlaze 8-bit Embedded Microcontroller User Guide, http://www.xilinx.com

/support/documentation/ip_documentation/ug129.pdf

 [2] WIZnet datasheet, http://www.wiznet.co.kr/UpLoadFiles/ReferenceFiles/W5100_

 Datasheet_v1.2.2.pdf

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

65

PPuubblliiccaattiioonn && CCoonnffeerreenncceess

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

1) Above paper has been published in International Journal of Engineering and

Innovative Technology (ISSN: 2277-3754 in Volume 1 Issue 4, April 2012.

 Above paper can be downloaded from following link:

hhttttpp::////wwwwww..iijjeeiitt..ccoomm//vvooll%%220011//IIssssuuee%%220044//IIJJEEIITT11441122220011220044__2244..ppddff

22)) Above paper has been presented in

at Shri Shankarprasad Agnihotri

College Of Engineering,Wardha.

33)) Presented paper in at Cummins College Of Engineering,Pune.

