This book is about the use of embedded devices such as FPGA board , ARM
boards on a shared network. It is important step to use FPGA to design
and improve flow of multi user data in a high speed computer network
environment. It will provide a more efficient way of utilizing a single board
on a shared network where multiple users can acquire one board for their
work but different time slot using TCP/IP

Prof Pansare Sandeep has completed his graduation in Electronics and
telecommunication and post graduation in Embedded and VISI. Currently
he is working as assistant professor in Amrutvahini Coll. of Engg.,
Sangamner.

978-3-659-83260-4

Sandeep Pansare
Satish Turkane
Chandrakant Bhos

Implementation Of Multi-
user Fpga Environment Over

TCP-IP

AP, m———————
P LAMBERT
W_\ Academic Publishing

)

Sandeep Pansare
Satish Turkane
Chandrakant Bhos

Implementation Of Multi-user Fpga Environment Over TCP-IP

Sandeep Pansare
Satish Turkane
Chandrakant Bhos

Implementation Of Multi-user Fpga
Environment Over TCP-IP

LAP LAMBERT Academic Publishing

Impressum / Imprint

Bibliografische Information der Deutschen Nationalbibliothek: Die Deutsche
Nationalbibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet Gber
http://dnb.d-nb.de abrufbar.

Alle in diesem Buch genannten Marken und Produktnamen unterliegen
warenzeichen-, marken- oder patentrechtlichem Schutz bzw. sind
Warenzeichen oder eingetragene Warenzeichen der jeweiligen Inhaber. Die
Wiedergabe von Marken, Produktnamen, Gebrauchsnamen, Handelsnamen,
Warenbezeichnungen u.s.w. in diesem Werk berechtigt auch ohne besondere
Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der
Warenzeichen- und Markenschutzgesetzgebung als frei zu betrachten waren
und daher von jedermann benutzt werden durften.

Bibliographic information published by the Deutsche Nationalbibliothek: The
Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available in the Internet
at http:/dnb.d-nb.de.

Any brand names and product names mentioned in this book are subject to
trademark, brand or patent protection and are trademarks or registered
trademarks of their respective holders. The use of brand names, product
names, common names, trade names, product descriptions etc. even without
a particular marking in this work is in no way to be construed to mean that
such names may be regarded as unrestricted in respect of trademark and
brand protection legislation and could thus be used by anyone.

Coverbild / Cover image: www.ingimage.com

Verlag / Publisher:

LAP LAMBERT Academic Publishing

ist ein Imprint der/is a trademark of

OmniScriptum GmbH & Co. KG

BahnhofstraBe 28, 66111 Saarbriicken, Deutschland / Germany
Email: info@lap-publishing.com

Herstellung: siehe letzte Seite /
Printed at: see last page
ISBN: 978-3-659-83260-4

Zugl. / Approved by: Pune, University Of Pune, Diss., 2012

Copyright © 2016 OmniScriptum GmbH & Co. KG
Alle Rechte vorbehalten. / All rights reserved. Saarbriicken 2016

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

ACKNOWLEGDEMENT

This work gives me an opportunity to express deep gratitude for the same. While
preparing my dissertation report. I received endless help from number of people. This
report would be incomplete if I don’t convey sincere thanks to all those who were involved.

First and foremost, I thank my guide Prof S. M. Turkane, Head of Department, of
Electronics and Telecommunication, PREC, Loni for giving me his valuable time and
opportunity to present this dissertation report.

I give my sincere regards to Prof. A. H. Ansari, Prof. S. A. Shaikh and Prof. S. G.
Galande, M. E. coordinator for their dispensable support, priceless suggestions and
valuable time.

I also thank all other staff members for their advice and cooperation. Finally, I wish
to thank my parents and for being supportive to me, without whom this seminar could not
have seen light of the day.

Every work is outcome of full proof planning, continuous hard work and organized

effort. This work is a combination of all three put together sincerely.

Mr. Pansare Sandeep Dilip

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

CONTENT

1 | Introduction Pg no.

1.1 Project OVEIVIEW ovvtine e iie i e 7

1.2 ODbJectiVes . .o oo vttt e e 7
2 | Literature Survey

Existing Technology and Research 9
3 | System Overview

3.1 BlockDiagram i 11

32 Target DeviCe. et et 12

33 Controller................ i 12

3.4 Ethernet Controller. 13

3.5 SlaveSerial Mode. 15
4 | Device Operations

Device Operationsoiuiiiiiiinenananennn. 17
5 | Layout Details

51 Toplayout............... ... i 19

52 Bottomlayout........ 20
6 | Hardware Design

6.1 Power Supply....... ..o 21

62 PROM 23

63 Resets 23

6.4 Clock Circuit.ovvvt i e 24

6.5 Switches. 25

6.6 LED. 25

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

6.7 RS232. 26
6.8 Ethernet 28
6.9 LCD.o 29
6. 10JTAG .o 29
Software Design
7.1 PicoBlaze Microcontroller Features. 30
7.2 Why the PicoBlaze Microcontroller? 31
73 .Why Use a Microcontroller within an FPGA? 32
7.4 PicoBlaze functional blocks. 33
7.5 Source Code 37
Experimentation
8.1 Initialization of W5100 50
8.2 FPGA Configuration.iiiunniinnnannn.. 51
8.3 Procedure............... T 50
Conclusion
9.1 Benefitsofthe Work 58
9.2 FinalResults i 58
9.3 Component Costing 61
9.4 FUUIE SCOPE . . .o oo et oo 62
References 63
Publications 65

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

List of Figures
Fig. No. Name Page No.
3.1 System Block Diagram 11
32 Controller Architecture 11
33 Block diagram of WIZNET 14
34 Slave Serial Mode 16
4.1 Device Operations 18
5.1 Top layout 19
5.2 Bottom Layout 20
6.1 Power Jack 21
6.2 1.2V Supply 21
6.3 2.5V Supply 22
6.4 3.3V Supply 22
6.5 PROM 23
6.6 Reset 23
6.7 Config Reset 24
6.8 Clock Circuit 24
6.9 Switches 25
6.10 LED 25
6.11 RS 232 27
6.12 RS 232 CONN 27
71 PiF:oBlaze Embedded Microcontroller Block 33
Diagram
8.1 Initialization of W5100 50
8.2 FPGA configuration I 51
8.3 FPGA configuration 11 51
9.1 Testbench Waveform for TLC 60
9.2 Testbench Waveform for RAM 61

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

ABSTRACT

Optimizing the single target device as a simulator in a multi user environment
is our aim to achieve. Itis important step to use FPGA to design and improve flow of
multi user data in a high speed computer network environment. Hence, we create a
system where multiple users (computers) will use one target device (FPGA) through
Ethernet without the need of actually carrying target device to each and every user. For this
we are using a controller module which consist of control logic and user
interface module.

It provides a more efficient way of utilizing a single board for hardware simulation.
It could place itself in educational establishments where the prototyping board does not
need to be changed from workstation to workstation and also provides an efficient way of

managing expensive resources.

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

Chapter 1

Introduction

1.1 Project Overview

In this paper we look at a simple type of hardware simulation strategy where
there is no altitude, orientation, no line of site limitation for simulating on the
FPGA board and where multiple users can acquire the same board for their hardware
simulation but at different time connecting through network over TCP/IP.

We will discuss hardware simulation, in particular for multi-user environment
and different transmission media. We will also see the future possibilities to reduce
the queue and accessibility of the FPGA board problem. A user can connect to FPGA
device either by Ethernet, WI-Fi, SPI or internet. Out of these transmission medias we
will concentrate on use of wired media.

1.2 Objectives

Optimizing the single FPGA board resource as a simulator in a multi user
environment between end user and targeted device. In this project we look at a simple
type of hardware simulation strategy where multiple users can acquire the same board for
their hardware simulation but at different time connecting through TCP/IP. We
explain the FPGA development platform we use for controller, which includes the TCP/IP
interface through Ethernet for communication with user. We will also see the future
possibilities to reduce the queue and accessibility of the FPGA board problem. A user can
connect to target device either by Ethernet or WI-Fi / Wi-Max , internet . Out of these
transmission Medias we will concentrate on use of Ethernet. We will use FPGA in both

target device and controller.

The TCP/IP is an additional interface that is added to provide interface capabilities.
The TCP/IP protocol uses a two-layer protocol: the higher layer TCP provides
communication between the target board and source (PC) and breaks application layer
information into packets and TCP/IP provides two methods of data delivery but our

project aims at interface implemented for connection-orientated delivery using TCP.

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

IP is the protocol responsible for addressing and routing packets between networks.

It ensures

they reach the correct destination network. IP deals with the physical network interface
layer and for this we use Ethernet. The Ethernet module we designed to fit our
requirements is based on a standard module provided by WIZNET W5100. The module
contains an Ethernet port. TCP is the connection based communication method that will
establish connection in advance and deliver the data through the connection by using IP
Address and Port number of the systems. There are two methods to establish the
connection. One is SERVER mode (passive open) that is waiting for connection request.
The other is CLIENT mode (active open) that sends connection request to a server. The
Client program has two versions. The Server program must be run on the machine which
has the FPGA board plugged into an ISA slot. The Server creates a socket, through which it
accepts the Clients connections. The socket is handled as a text file. Both the Server and
Client can write and read from it. The Server contains the code for downloading the

configuration.

The Client program must be run on the station that stores the configuration file. The
Client needs two parameters: the name of the file containing the configuration to be
downloaded and the IP address of the Server. The Client creates a socket too and tries to
connect its socket to the server. If it succeeds, the Client sends a header, which contains the
name of the file containing the configuration, and some commands to the Server. After the
header, it sends the configuration data. The socket is handled as a text file and the
configuration data is stored in the memory in binary format (independently from the file
format), the Client must encode the binary data into textual data (like MIME). This is
simple: the Client reads three bytes, which is 3 x 8 = 24 bits. It divides in four sections (24

=4 x 6 bits), so now he has four 6-bit values.

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

Chapter 2

Literature Survey
2.1 Existing Technology and Research

The ability to reconfigure an FPGA via the Internet was initially put forward by
Fallside [1] and since then has been widely developed and commercially realized. Other
work that is not directly related includes task management on FPGAs by Brebner [2] where
such an idea could be applied to multiple users/processes sharing a FPGA and platform
board for functional verification. This paper looks at a higher, simpler abstract view of
efficiently utilizing an FPGA prototyping board. Such a strategy would bring benefits to
FPGA rapid prototyping engineers, engineers changing workstations or on the move, and
distributed design teams posted around the globe. It could also place itself in educational
establishments where the prototyping board does not need to be changed from workstation

to workstation and also provides an efficient way of managing expensive FPGA resources.

The feasibility of run-time reconfiguration of FPGAs has been established by a
large number of case studies. However, these systems have typically involved an ad hoc
combination of hardware and software. The software that manages the dynamic
reconfiguration is typically specialized to one application and one hardware configuration.
Dynamic reconfiguration of FPGAs has become viable with the introduction of devices
that allow high speed partial reconfiguration, e.g., the Xilinx XC6200 series [3]. Dynamic
reconfiguration is usually performed by a software system that decides when to reprogram
part of the FPGA and with what. The simplest kind of run-time software simply selects a

precompiled circuit and transmits the programming data directly to the FPGA.

Alternative to the use of Internet there has been also tremendous research in field of
hardware-software co-synthesis of reconfigurable FPGA’s. Hardware-software cosynthesis
algorithms automatically produce hardware-software architectures for distributed
embedded systems. Ideally, they minimize multiple costs, such as execution time, price,
and average power consumption. Given a specification, a hardware-software co synthesis al-
gorithm must select different processing elements (PEs) and communication resources to
use in the embedded system (allocation), determine which resource will be used to carry

outreach portion of the specification’s computation and communication (assignment) and

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

produce a schedule for all of the specification’s computation and communication
(scheduling). Given an embedded system specification, a co-synthesis algorithm produces
a detailed description of an architecture that meets the design constraints and optimizes a
set of costs. FPGAs are commonly used in distributed embedded systems. They share
many traits with application-specific integrated circuits (ASICs); they are parallel hardware
platforms. However, they have the advantages of reducing design time and supporting
dynamic (runtime) reconfiguration. Although FPGAs typically have lower performance,
higher power consumption, and higher energy consumption when compared with ASICs, for
many applications, they have substantially better performance, average power
consumption, and energy than general-purpose processors [4]. When a design uses dynamic
reconfiguration, it is important to minimize the overhead, i.e., time and energy consumption,
associated with reconfiguration. To reduce this overhead, much new reconfigurable
architecture has been proposed [5]. In modern dynamically reconfigurable FPGAs, the
embedded configuration storage circuitry can be updated selectively in a few clock
cycles without disturbing the execution of the remaining logic. These new designs have
increased the potential benefit of using dynamically reconfigurable FPGAs in low-power
embedded systems by dramatically reducing the performance and energy penalties of

dynamic reconfiguration. However, these costs are still substantial.

The increasing demand and use of computers in universities and research labs in the
late 1960s generated the need to provide high-speed interconnections between computer
systems. Ethernet was developed at Xerox PARC in 1973—-1975. In 1976, after the system
was deployed at PARC, Metcalfe and Boggs published a seminal paper, "Ethernet:
Distributed Packet-Switching for Local Computer Networks."It is important step for IP
and system development to use FPGA and IP core to design and improve flow of multi
user data in a high speed communication internet environment and optimal
utilization of available bandwidth. A user can connect to FPGA device either by
Ethernet, WI-Fi, ISA or internet[6][7]. Out of these transmission medias we will
concentrate on the use of wired media. There is no need for end users to have their own
FPGA device. Our aim is to use Xilinx’s system generator where multi users will use

same IP Core over a distance sharing only one FPGA resource through internet.

10

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

Chapter 3

System Overview
3.1 Block Diagram

#— USER.-]

k

[ISER.-2
TARGET *

Y—p USER. 1

i

Figure: 3.1 System Block Diagram

We will see all these blocks in detail but first we will have an overview.
Target Device:
Target device is the device which will be used for downloading the user program.

We will have such one target device in the network. This device will be shared in the

network.
Controller:
SLAVE CONTROL SPI
SERIAL |¢ > LOGIC < > INTER-
MODE (FPGA with FACE
Pico blaze)

Figure: 3.2 Controller Architecture

11

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

In this we will have FPGA kit which will be loaded with Pico-Blaze is used for
controlling purpose (controlling of target device) and hence called controller board. Slave
serial mode is used to connect to target device while SPI interface is used for interfacing

Ethernet module.

3.2 Target Device

Our aim is to share target device in a network. For this we have taken our target
device as FPGA (SPARTAN 3E). Spartan-3E FPGAs are programmed by loading
configuration data into robust, reprogrammable, static CMOS configuration latches (CCLs)
that collectively control all functional elements and routing resources. The FPGA’s
configuration data is stored externally in a PROM or some other non-volatile medium,
either on or off the board. After applying power, the configuration data is written to the
FPGA using any of seven different modes: master Serial from a Xilinx Platform Flash
PROM, Serial Peripheral Interface (SPI) from an industry-standard SPI serial Flash, Byte
Peripheral Interface (BPI) Up or Down from an industry-standard x8 or x8/x16 parallel
NOR Flash, Slave Serial typically downloaded from a processor, Slave Parallel, typically
downloaded from a processor, JTAG, typically downloaded from a processor or system
tester. Furthermore, Spartan-3E FPGAs support Multi boot configuration, allowing two or
more FPGA configuration bit streams to be stored in a single parallel NOR Flash. The
FPGA application controls which configuration to load next and when to load it. We will be
using slave serial mode for our target device.
3.3 Controller

We are going to use soft processor core “PicoBlaze” an open source from Xilinx as
our external host .This PicoBlaze soft processor core will be implemented in FPGA(control
logic). The PicoBlaze microcontroller is a compact, capable, and cost-effective fully
embedded 8-bit RISC microcontroller core optimized for the Xilinx FPGA families. The
PicoBlaze microcontroller core is totally embedded within the FPGA and requires no
external resources. The PicoBlaze microcontroller is extremely flexible. The basic
functionality is easily extended and enhanced by connecting additional FPGA logic to the
microcontroller’s input and output ports. The PicoBlaze peripheral set can be customized to
meet the specific features, function, and cost requirements of the target application. As the

PicoBlaze microcontroller is delivered as synthesizable VHDL source code, the core is

12

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

future-proof and can be migrated to future FPGA architectures, effectively eliminating
product obsolescence fears. Being integrated within the FPGA, the PicoBlaze
microcontroller reduces board space, design cost, and inventory.

The PicoBlaze microcontroller is specifically designed and optimized for the Spartan-3
family and with the support of Spartan-6 and Virtex-6 FPGA architectures. As it is
delivered as VHDL source, the PicoBlaze microcontroller is immune to product
obsolescence as the microcontroller can be retargeted to future generations of Xilinx
FPGAs, exploiting future cost reductions and feature enhancements. Before the advent of
the PicoBlaze and MicroBlaze embedded processors, the microcontroller resided externally
to the FPGA, limiting the connectivity to other FPGA functions and restricting overall
interface performance. By contrast, the PicoBlaze microcontroller is fully embedded in the
FPGA with flexible, extensive on-chip connectivity to other FPGA resources. Signals
remain within the FPGA.

The PicoBlaze microcontroller reduces system cost because it is a single-chip solution,
integrated within the FPGA and sometimes only occupying leftover FPGA resources. The
PicoBlaze microcontroller is resource efficient. Consequently complex applications are
sometimes best portioned across multiple PicoBlaze microcontrollers with each controller
implementing a particular function, for example, keyboard and display control, or system
management. Microcontrollers and FPGAs both successfully implement practically any
digital logic function. The program memory requirements grow with increasing complexity.
Programming control sequences or state machines in assembly code is often easier than
creating similar structures in FPGA logic. Microcontrollers are typically limited by
performance. Each instruction executes sequentially, as an application increases in
complexity, the number of instructions required to implement the application grows and
system performance decreases accordingly. A microcontroller embedded within the FPGA
provides the best of both worlds.

34 Ethernet Controller

We are using W5100 as ehernet controller. It is a full-featured, single-chip Internet-
enabled 10/100 Mbps Ethernet controller designed for embedded applications where ease of
integration, stability, performance, area and system cost control are required. It has been
designed to facilitate easy implementation of Internet connectivity without OS . It is IEEE

802.3 10BASE-T and 802.3u 100BASE-TX compliant. Fig.4 shows the block diagram for

13

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

our ehernet controller. The W5100 includes fully hardwired, market-proven TCP/IP stack
and integrated Ethernet MAC & PHY. Hardwired TCP/IP stack supports TCP, UDP, IPv4,
ICMP, ARP, IGMP and PPPoE which has been proven in various applications for several
years. 16Kbytes internal buffer is included for data transmission. No need of consideration
for handling Ethernet Controller, but simple socket programming is required. For easy
integration, three different interfaces like memory access way, called direct, indirect bus
and SPI, are supported on the MCU side. TCP is the connection based communication
method that will establish connection in advance and deliver the data through the
connection by using IP Address and Port number of the systems. There are two methods to
establish the connection. One is SERVER mode(passive open) that is waiting for
connection request. The other is CLIENT mode (active open) that sends connection request

to a server.

[Application }
Socket APl -~ --------- { ------------

~

[Driver Program J

MCU Bus WF---------—. ————_____. SPIUF

T v |\

Hardware TCP/IP Core
‘ICMPH IGMPH TCPJ'- UbDpP ‘

802.3 Ethernet MAC

Jayng Xy/x1

\ m w5100

Transformer

[RJ45 J

Figure: 3.3 Block diagram of WIZNET

14

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

Process of using General SPI Master Device:
1. Configure Input/output direction on SPI Master Device pins.

/SS (Slave Select): Output pin

SCLK (Serial Clock): Output pin

MOSI (Master Out Slave In): Output pin

MISO (Master In Slave Out): Input pin
2. Configure /SS as ‘High’
3. Configure the registers on SPI Master Device.

SPI Enable bit on SPCR register (SPI Control Register)

Master/Slave select bit on SPCR register

SPI Mode bit on SPCR register

SPI data rate bit on SPCR register and SPSR register

(SPI State Register)
4. Write desired value for transmission on SPDR register (SPI Data Register).
5. Configure /SS as ‘Low’ (data transfer start)
6. Wait for reception complete
7. 1f all data transmission ends, configure /SS as ‘High’
3.5 Slave Serial Mode

In Slave Serial mode, an external host such as microcontroller writes serial

configuration data into the FPGA (target device), using the synchronous serial interface. In
Slave Serial mode (M[2:0] = <1:1:1>), an external host such as a microprocessor or
Microcontroller writes serial configuration data into the FPGA, using the synchronous
serial interface shown in Figure 3.4. The figure shows optional components in gray and
uses a circled letter to associate a signal with more information found in the text. The serial
configuration data is presented on the FPGA’s DIN input pin with sufficient setup time

before each rising edge of the externally generated CCLK clock input.

The intelligent host starts the configuration process by pulsing PROG_B and
monitoring that the INIT_B pin goes High, indicating that the FPGA is ready to receive its
first data.The host then continues supplying data and clock signals until either the DONE
pin goes High, indicating a successful configuration, or until the INIT_B pin goes Low,

indicating a configuration error. The configuration process requires more clock cycles than

15

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

indicated from the configuration file size. Additional clocks are required during the FPGA’s

start-up sequence, especially if the FPGA is programmed to wait for selected Digital Clock

Managers (DCMs) to lock to their respective clock inputs

+1.2V
VCCINT
®+ HSWAP VCCO 0 [#—VGCO 0
Sve VeCO._2 -q—@
Sarial @,
Made
1" —=| M2
Intelligent v iy
Download Host O 1 : ::; gg
SN | E
VCo Spartan-3E
CLOCK = CCLK FPGA
SERIAL_OUT = OIN DOUT =
PROG_B |- INT B
+|nternal memary DONE|#—7y | [T 777°°7 Ec?ﬁu-)(-q_ 2.5V
+ Disk drive e
« Over natwork INT_B | = TOI DO -
+ Over RF fink GND = TMS
L | TCK ooy
— +£.
» Microcontroller
Froceasor PROG_B DOME |,
Tagter
« Computer GJEJ % r‘%
— =+
PROG_B +
Recommend
open-drain
dhiver +2.5V
JTAG
o[
™SI
TEK|Cr
TDO [Gx-2 o4 _pazaoe

Figure: 3.4 Slave Serial Mode

16

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

Chapter 4

Operations
41 DEVICE OPERATIONS

The W5100 is controlled by a set of instruction that is sent from a host controller,
commonly referred to as the SPI Master. The SPI Master communicates with W5100 via
the SPI bus which is composed of four signal lines: Slave Select (/SS), Serial Clock
(SCLK), MOSI (Master out Slave In), MISO (Master in Slave Out). The SPI protocol
defines four modes for its operation (Mode 0, 1, 2, 3). Each mode differs according to the
SCLK polarity and phase - how the polarity and phase control the flow of data on the SPI
bus. The W5100 operates as SPI Slave device and supports the most common modes - SPI
Mode 0 and 3.The only difference between SPI Mode 0 and 3 is the polarity of the SCLK
signal at the in active state. With SPI Mode 0 and 3, data is always latched in on the rising
edge of SCLK and always output on the falling edge of SCLK.

There are only two data lines used between SPI devices. So, it is necessary to define
OP-Code. W5100 uses two types of OP-Code - Read OP-Code and Write OP-Code. Except
for those two OP-Codes, W5100 will be ignored and no operation will be started. In SPI
Mode, W5100 operates in “unit of 32-bit stream”. The unit of 32-bit stream is composed of
1 byte OP-Code Field, 2 bytes Address Field and 1 byte data Field. OP-Code, Address and
data bytes are transferred with the most significant bit (MSB) first and least significant
bit(LSB) last. In other words, the first bit of SPI data is MSB of OP-Code Field and the last
bit of SPI data is LSB of Data-Field.

17

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

Host e
FPGA VOOINT
®_~ HOWAP VGGO.0 [a=Y0C0.0
ﬁ ?:;; V6002 4@
—\ 7
1 (M2
d @ 1= M1 g
{0 ?
Lane I s ‘
o Spartan-9E
Cable i -
SERIAL_OUT B DN 0ouT -
PROGLB - A it
DONE [— VOCAUX =425V
INIT_B 4 » 10 00—
GND # TMS
l = TOK L
PROGE DONElm
GND
* i
17K
!l
TMS!C
rmt|(,
Tm!c 88184 jeaan

Figure: 4.1 Device Operations

18

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

Chapter 5

Layout Details
5.1 Top layout

Figure: 5.1 Top layout

19

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

5.2 Bottom Layout

LTS

Figure: 5.2 Bottom Layout

20

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

Chapter 6

Hardware Design

6.1 Power Supply

In our project we have used three different voltages .These are 1.2V, 2.5V and 3.3V.

6.1.1 Power Jack

N

7\
@
%

+5V

[£

El

[

FPOWER-JACK_B14-2

6.12 1.2V Supply

] >
I
+] LCS5B

IBALF —

Figure: 6.1 Power Jack

1
[Cs7
E B.IuF

—

I

1.2

P Trivz
I o

=

Fl14B

LA N—

+ 5
. FE 1w
L hAAZ17
= oF Z
i~ =N
AT
1
1 = gmiaa
el S =1 = ;
F @ 10F ;i BE

Figure: 6.2 1.2V Supply

21

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

6.1.3 2.5V Supply
+5V _ +2.5V
REGZ “;5 @ TPZVS5
L M3 , A133 DMNA
3 opP - et
e nE
AD) [A119 L
Z 33PE = RIZP
| = 338E
| ! %
s 1
—L_cBa < BB L ces
2 @.IuF 3 uF o LEDZVE
- LED-RED
L —
K
=
Figure: 6.3 2.5V Supply
6.1.4 3.3V Supply
+3. 3V
) REG3V3
+51\ &1 .
' LM317 oie | DNRRV3
3 aF ‘ + AV
P 4 o
ADY [% Ail4
2 RiZ > 330E RIS
> 33BE | 33BE
e | S
R i 2 RU3 i—lcsz .
VA= A ERP v "
P 1 £
K K
=

Figure: 6.4 3.3V Supply

22

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

6.2 PROM
+3.3V
28 19 18
- O =
[O =
U o O
> 5 B
MISO/DIN —L 1 ppg TDO 7 TDO
MSCLK ~——2 1 CLK I3
y TDO_M 2 LED—
TDO A T DU-M .2 |1
ASE TMS 2 Tms DNE %
BE 5] 15
TCK TCK DMNC —
DNC %
INIT 2 JOE/RESET DNC[—¢
18 Pe— =
DONE cE DN|:—~=2
FROG = DN |
GKD
i Ut
- XCF@45-vO2D
Figure: 6.5 PROM
We will be using 4MB PROM.
6.3 RESETS
6.3.1 Reset
+ 3. 3%
T >
fe 1
— < I
RESE T] = (R R
e sw —Small (%
RESET
!
183 K
RE8 =x

Figure: 6.6 Reset

This reset is located on target board. This reset is utilized for the target board.

23

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

6.3.2 Config Reset

+3.3W

COrMF IEGRST

. AE7
e T O e B A PROG
Kew—Small IAE
CZ24
—— B .B1uF

|
N

Figure: 6.7 Config Reset

Config reset is used on controller board. It is used when a new program is needed to be

downloaded in target FPGA board.

6.4 Clock Circuit

+3.3V +3 3V
C4
0 AuF
1 EN VCC
_ Ri12
GND —2 | GND CLKOUT}|—3 L A A4 — GCL
47E EL@%M

O5CI

Figure: 6.8 Clock Circuit

24

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

6.5 SWITCHES

+3.3V
d 6 L7 AB4 pAn2
£ 5 ILE FA85 s ap2
3 4 LS Res y_y___._____z
4 3 IL4 R87 A2
5 1z I3 RB8 ;r___.\2
/ 2 L1 R3O\ AAZ
d 5 LB A3l map 2
4K/
5 Wi e
Figure: 6.9 Switches
6.6 LED
LED-RED
F_TESTLED® . o~ Elcl=l=] L=
L\/\' =
F_TES TLEDI RE\B/\ 333 E _I.-_"J]i*' T
RZ2 \\:,\\,,
F_TESTLEDZ) IswE e Tz
AT I36aE l\‘}'i?‘ TL =3
F_TESTLED3 *V T
\N\N ==
LED-RED
F_TESTLEDS LORR. 33|mE PL\MTJ e TL
R19 N
J3aE] TLS
F_TESTLEDS ~ e
N,
R IzEmE R Tl 5
F_TESTLEDGS L=
™,
F_TESTLEDZ RW ERCR=TS Lﬁx TL =
R N
S =

Figure: 6.10 LED

25

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

6.7 RS232
RS232 Standards

To allow compatibility among data communication equipment made by various
manufactures, An interfacing standard called RS232 was set by the Electronics Industries
Association (EIA) in 1960. In 1963 it was modified and called RS232A. RS232B and
RS232C were issued in 1965 and 1969, respectively. Here we refer it simply as RS232.
Today, RS232 is the most widely used serial I/O interfacing standard. This standard is used
on PCs and numerous types of equipment. However, since the standard was set long before
the advent of TTL login family, its input and output voltage levels are not TTL compatible.
In RS232, a 1 is represented by -3 to -25 V, while a 0 bit is +3V to +25V, making -3 to +3
undefined. For this reason, to connect any RS232 to a microcontroller system we must use
voltage converter such as MAX3232 to convert the TTL logic levels to the RS232 voltage

level, and vice versa. MAX3232 IC chip are commonly referred to as line drivers.

RS232 pins
IBM introduced the DB-9 version of the serial I/O standard, which uses 9 pins only.

The DB-9 pins are as shown below.

Pin Description
1. | Data carrier detect (DCD)
Receiver data (RxD)

Transmitted data(TxD)

Data terminal ready(DTR)
Signal Ground(GND)
Data set ready(DSR)
Request to send(RTS)
Clear to send(CTS)

Ring indicator(RI)

R B B Il ol B I

26

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

+3.3V
i
MAXZ32 ﬂ c39+3.3V
16 uF
I IuF Zi
I |cys VEC = £ I+
1 v+ 2
+ cia
TuF
.
2 lcz+
i
+ cHt
TuF
E,\L C2- 'z
RS232_RXI 13 | g RI1IOUT F_RASZ232_RX!
9
& <« F_RS232_RX2
RS5232_RAX2 B | gz F2OUT T
I TiIouT —x RSZ23z2_TxXI
F_RSZ3Z_TX! =———— TIIN - Hoogo Txo
A _
F_ASZ232_TxXZ2 12 121N T=20uT
B V-
GND
i f

Ciz ¥
I

Figure: 6.11 RS 232

RSZ232 1
RS232 TX1
RS232 _RXI1

RSZ232_1

GND

dadd:

m

RS232 1

lL[] [SSRENIRN

Jh
DBBI -F-RT

Figure: 6.12 RS 232 CONN

RS232 has been used which is optional. It has been used for testing purpose.

27

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

6.8 EHERNET

[SMND

MOS 1 ' = MISC
3 4
5 &
7 a
2 Ja
LMD 2 .+3.3V
=8 13 14
TEm 15 =
17 1|
19 28
rE
BERG-DRA-Z@-M-5T
+3.3V ! L2 RES_ETH
CLK_ETH| 2 &
5 Nzl
'-‘\\ 7 =]
\ A4 AIS
|1 =] 1a A g L |
e e P I 12 L1
LEpz J3BEF I3@E gh
LED-RED 13 il LED3
5 16 w LED-AED
I\ 17 =) & n
T}-ﬂ VVERE D
P RAVAVAT
LEDI A3@E

Figure: 6.13 Ethernet

W2

BERLE-DR-ZE-M-S5T

This Ethernet module has been used to mount WiZnet 5100 IC.

28

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

69 LCD
A== 1 GrND
WwDD |2 + 5
vo |3 ,\F"/?'VE’\ 33BE 4o,
S EEVWAGT T
R.W |8 (=1 kb
e
7 \
0o =] N R34 ba
- 4‘k—? -/:\/\! R3S bl
o |EIB ‘/\y R36 b2
o Th—g'\/\f Sk D3
D4 o oy .._,F{'SEI Da
D5 HZ e AN ns
DE a9
D7 |1 e N IBOE o7
15 +5
HE. «GMND
J 11
LCD-16 X 2
Figure: 6.14 LCD
6.10 JTAG
L e «x+3 .3V CND
2w« BND = MSCLK
L 3 . TCK 3 MISO/DIN
-4« TDO Lt .« PROG
| 9« TDI | 5+ DONE
| 5« TMS L B . INIT
JTAG 12

RELIMATE-BE-M-5T

RELIMATE-BE-M-5T

Figure: 6.15 JTAG
JTAG is used for programming into PROM which is located on Controller FPGA board.

29

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

Chapter 7

Software Design

Picoblaze

The PicoBlaze microcontroller is a compact, capable, and cost-effective fully
embedded 8-bit RISC microcontroller core optimized for the Xilinx FPGA families. In
typical implementations, a single FPGA block RAM stores up to 1024 program instructions,
which are automatically loaded during FPGA configuration. Even with such resource
efficiency, the PicoBlaze microcontroller performs a respectable 44 to 100 million

instructions per second (MIPS) depending on the target FPGA family and speed grade.

The PicoBlaze microcontroller core is totally embedded within the target FPGA and
requires no external resources. The PicoBlaze microcontroller is extremely flexible. The basic
functionality is easily extended and enhanced by connecting additional FPGA logic to the
microcontroller’s input and output ports. The PicoBlaze microcontroller provides abundant,
flexible /O at much lower cost than off-the-shelf controllers. Similarly, the PicoBlaze
peripheral set can be customized to meet the specific features, function, and cost requirements
of the target application. Because the PicoBlaze microcontroller is delivered as synthesizable
VHDL source code, the core is future-proof and can be migrated to future FPGA
architectures, effectively eliminating product obsolescence fears. Being integrated within the

FPGA, the PicoBlaze microcontroller reduces board space, design cost, and inventory.

7.1 PicoBlaze Microcontroller Features

The PicoBlaze microcontroller supports the following features:

* 16 byte-wide general-purpose data registers

* 1K instructions of programmable on-chip program store, automatically loaded during
FPGA configuration

* Byte-wide Arithmetic Logic Unit (ALU) with CARRY and ZERO indicator flags

e 64-byte internal scratchpad RAM

» 256 input and 256 output ports for easy expansion and enhancement

30

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

« Automatic 31-location CALL/RETURN stack

 Predictable performance, always two clock cycles per instruction, up to 200 MHz or

100 MIPS in a Virtex-II Pro FPGA
« Fast interrupt response; worst-case 5 clock cycles
* Optimized for Xilinx Spartan-3 architecture—just 96 slices and 0.5 to 1 block RAM
» Support in Spartan-6, and Virtex-6 FPGA architectures

» Assembler, instruction-set simulator support

7.2 Why PicoBlaze Microcontroller?

There are literally dozens of 8-bit microcontroller architectures and instruction sets.
Modern FPGAs can efficiently implement practically any 8-bit microcontroller, and available
FPGA soft cores support popular instruction sets such as the PIC, 8051, AVR, 6502, 8080,
and Z80 microcontrollers. Why use the PicoBlaze microcontroller instead of a more popular
instruction set? The PicoBlaze microcontroller is specifically designed and optimized for the
Spartan-3 family and with support for Spartan-6 and Virtex-6 FPGA architectures. Its
compact yet capable architecture consumes considerably less FPGA resources than
comparable 8-bit microcontroller architectures within an FPGA. Furthermore, the PicoBlaze
microcontroller is provided as a free, source-level VHDL file with royalty-free re-use within
Xilinx FPGAs. Some standalone microcontroller variants have a notorious reputation for
becoming obsolete. Because it is delivered as VHDL source, the PicoBlaze microcontroller is
immune to product obsolescence as the microcontroller can be retargeted to future
generations of Xilinx FPGAs, exploiting future cost reductions and feature enhancements.

Furthermore, the PicoBlaze microcontroller is expandable and extendable.

Before the advent of the PicoBlaze and MicroBlaze embedded processors, the
microcontroller resided externally to the FPGA, limiting the connectivity to other FPGA
functions and restricting overall interface performance. By contrast, the PicoBlaze
microcontroller is fully embedded in the FPGA with flexible, extensive on-chip
connectivity to other FPGA resources. Signals remain within the FPGA, improving overall

performance. The PicoBlaze microcontroller reduces system cost because it is a single-chip

31

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

solution, integrated within the FPGA and sometimes only occupying leftover FPGA
resources. The PicoBlaze microcontroller is resource efficient. Consequently, complex
applications are sometimes best portioned across multiple PicoBlaze microcontrollers with
each controller implementing a particular function, e.g, keyboard and display control, or

system management.

7.3 Why Use a Microcontroller within an FPGA?
Microcontrollers and FPGAs both successfully implement practically any digital

logic function. However, each has unique advantages in cost, performance, and ease of use.
Microcontrollers are well suited to control applications, especially with widely changing
requirements. The FPGA resources required to implement the microcontroller are relatively
constant. The same FPGA logic is re-used by the various microcontroller instructions,
conserving resources. The program memory requirements grow with increasing complexity.
Programming control sequences or state machines in assembly code is often easier than

creating similar structures in FPGA logic.

Microcontrollers are typically limited by performance. Each instruction executes
sequentially. As the application increases in complexity, the number of instructions required
to implement the application grows and system performance decreases accordingly. By
contrast, performance in an FPGA is more flexible. For example, an algorithm can be
implemented sequentially or completely in parallel, depending on the performance
requirements. A completely parallel implementation is faster but consumes more FPGA
resources. A microcontroller embedded within the FPGA provides the best of both worlds.
The microcontroller implements non-timing crucial complex control functions while timing-
critical or data path functions are best implemented using FPGA logic. For example, a
microcontroller cannot respond to events much faster than a few microseconds. The FPGA
logic can respond to multiple, simultaneous events in just a few to tens of nanoseconds.
Conversely, a microcontroller is cost-effective and simple for performing format or

protocol conversions.

32

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

PicoBlaze Microcontroller FPGA Logic

Easy to program, excellent for control and | » Significantly higher performance
state machine applications Excellent at parallel operations
* Resource requirements remain constant

Strengths e d =11} . Sequent.laihvs. parallel implementation trade-

with increasing complexity offs optimize performance or cost

* Re-uses logic resources, excellent for » Fast response to multiple, simultaneous inputs
lower-performance functions

» Executes sequentially + Control and state machine applications more

+ Performance degrades with increasing difficult to program
complexity * Logic resources grow with increasin

Weaknesses r £ 5 2 5

Program memory requirements increase complexity
with increasing complexity
Slower response to simultaneous inputs

Table: 7.1 PicoBlaze Vs FPGA

7.4 PicoBlaze functional blocks

8 =
c 1 8
1Kx18 § o~ of
Instruction £ 2 E E g Scraﬁ:‘:{[?;?ieﬁm
PROM = | [R3®
g <
2 G
Instruction Constants
Decoder
INTERRUPT 16 Byle-Wide Registers | .
E Enabla 30 51 32 53 Operand 1 u
34 55 36 s7
sC sD sE sk

’_‘ Operand 2

Figure: 7.1 PicoBlaze Embedded Microcontroller Block Diagram

Features:

General-Purpose Registers

The PicoBlaze microcontroller includes 16 byte-wide general-purpose registers, designated
as registers sO through sF. For better program clarity, registers can be renamed using an
assembler directive. All register operations are completely interchangeable; no registers are
reserved for special tasks or have priority over any other register. There is no dedicated

accumulator; each result is computed in a specified register.

33

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

1,024-Instruction Program Store

The PicoBlaze microcontroller executes up to 1,024 instructions from memory within the
FPGA, typically from a single block RAM. Each PicoBlaze instruction is 18 bits wide. The
instructions are compiled within the FPGA design and automatically loaded during the
FPGA configuration process. Other memory organizations are possible to accommodate
more PicoBlaze controllers within a single FPGA or to enable interactive code updates

without recompiling the FPGA design.

Arithmetic Logic Unit (ALU)

The byte-wide Arithmetic Logic Unit (ALU) performs all microcontroller calculations,
including:

 Basic arithmetic operations such as addition and subtraction

» Bitwise logic operations such as AND, OR, and XOR

* Arithmetic compare and bitwise test operations

* Comprehensive shift and rotate operations

All operations are performed using an operand provided by any specified register (sX).
The result is returned to the same specified register (sX). If an instruction requires a second
operand, then the second operand is either a second register (sY) or an 8-bit immediate

constant (kk).

Flags

ALU operations affect the ZERO and CARRY flags. The ZERO flag indicates when the
result of the last operation resulted in zero. The CARRY flag indicates various conditions,

depending on the last instruction executed.

The INTERRUPT_ENABLE flag enables the INTERRUPT input.

64-Byte Scratchpad RAM

The PicoBlaze microcontroller provides an internal general-purpose 64-byte scratchpad
RAM, directly or indirectly addressable from the register file using the STORE and FETCH

instructions. The STORE instruction writes the contents of any of the 16 registers to any of

34

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

the 64 RAM locations. The complementary FETCH instruction reads any of the 64 memory
locations into any of the 16 registers. This allows a much greater number of variables to be
held within the boundary of the processor and tends to reserve all of the I/O space for real
inputs and output signals. The six-bit scratchpad RAM address is specified either directly
(ss) with an immediate constant, or indirectly using the contents of any of the 16 registers
(sY). Only the lower six bits of the address are used; the address should not exceed the 00 - 3F

range of the available memory.

Input/Output

The Input/Output ports extend the PicoBlaze microcontroller ’s capabilities and allow the
microcontroller to connect to a custom peripheral set or to other FPGA logic. The PicoBlaze
microcontroller supports up to 256 input ports and 256 output ports or a combination of
input/output ports. The PORT_ID output provides the port address. During an INPUT
operation, the PicoBlaze microcontroller reads data from the IN_PORT port to a specified
register, sX. During an OUTPUT operation, the PicoBlaze microcontroller writes the

contents of a specified register, sX, to the OUT_PORT port.
Program Counter (PC)

The Program Counter (PC) points to the next instruction to be executed. By default, the PC
automatically increments to the next instruction location when executing an instruction.
Only the JUMP, CALL, RETURN, and RETURNI instructions and the Interrupt and Reset
Events modify the default behavior. The PC cannot be directly modified by the application

code; computed jump instructions are not supported.

The 10-bit PC supports a maximum code space of 1,024 instructions (000 to 3FF hex). If the

PC reaches the top of the memory at 3FF hex, it rolls over to location 000.

Program Flow Control

The default execution sequence of the program can be modified using conditional and non-

conditional program flow control instructions.

The JUMP instructions specify an absolute address anywhere in the 1,024-instruction

program space.

35

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

CALL and RETURN instructions provide subroutine facilities for commonly used sections of
code. A CALL instruction specifies the absolute start address of a subroutine, while the

return address is automatically preserved on the CALL/RETURN stack.

If the interrupt input is enabled, an Interrupt Event also preserves the address of the
preempted instruction on the CALL/RETURN stack while the PC is loaded with the
interrupt vector, 3FF hex. Use the RETURNI instruction instead of the RETURN instruction

to return from the interrupt service routine (ISR).

CALL/RETURN Stack

The CALL/RETURN hardware stack stores up to 31 instruction addresses, enabling
nested CALL sequences up to 31 levels deep. Since the stack is also used during an
interrupt operation, at least one of these levels should be reserved when interrupts are
enabled.

The stack is implemented as a separate cyclic buffer. When the stack is full, it overwrites the
oldest value. Consequently, there are no instructions to control the stack or the stack pointer.

No program memory is required for the stack.

Interrupts

The PicoBlaze microcontroller has an optional INTERRUPT input, allowing the PicoBlaze
microcontroller to handle asynchronous external events. In this context, “asynchronous”
relates to interrupts occurring at any time during an instruction cycle. However,
recommended design practice is to synchronize all inputs to the PicoBlaze controller using
the clock input. The PicoBlaze microcontroller responds to interrupts quickly in just five

clock cycles.

Reset

The PicoBlaze microcontroller is automatically reset immediately after the FPGA
configuration process completes. After configuration, the RESET input forces the processor
into the initial state. The PC is reset to address 0, the flags are cleared, interrupts are
disabled, and the CALL/RETURN stack is reset. The data registers and scratchpad RAM are
not affected by Reset.

36

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

7.5 Source Code
Source Code Platform:

Pico-blaze assembly language will be used on the controller board. Pico-blaze assembler
will be used to obtain the respective .vhdl file.
Source code purpose:

The following source code is controlling the communication between the Ethernet module
and controller board FPGA and also communication between target FPGA and source
FPGA board.

Following is the source code for initialization of W5100 IC

LED_VERIFY DSOUT 5

MISO DSIN 4

MOSI DSOUT 9 e SPI

CS DSOUT 8 ; mmmmmmmee SPI

CLK DSOUT 7 R SPI
eth_reset DSOUT 10

CCLK DSOUT 0

D_IN DSOUT 1

prog DSOUT 2

init_b DSIN 6

done DSIN 7

RX_DATA DSIN 5

SW DSIN 8

TX_DATA DSOUT 3

TX_ENABLE DSOUT 4

; REGISTERS -----mmmemmmmmmmeeeeeee ;
TEMP1 EQU sO

TEMP2 EQU sl

TEMP3 EQU s2

REG EQU s3

DATA EQU s4

CNTRI1 EQU s5

CNTR2 EQU s6

SPI_REG EQU s7

ADDRI1 EQU s8 ; LSB ADDRESS
ADDR2 EQU sD

ADDR3 EQU sA

TEMP EQU sB

} mmmm e CONSTANS - INSTRUCTIONS -----------===---- ;
; RAM LOCATIONS ---mmmmmmmmmeme e ;
save_s2 EQU 58

37

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

save_s3 EQU 57
save_s4 EQU 56
TX_FLAG EQU 51
TEMP_FLAG EQU 40
UR_DATA_RAM EQU 0
A_l EQU $41
B_1 EQU $42
C_1 EQU $43
D_1 EQU $44
E_1 EQU $45
F_1 EQU $46
G_1 EQU $47
H_1 EQU $48
11 EQU $49
J_1 EQU $4A
K 1 EQU $4B
L_1 EQU $4C
M_1 EQU $4D
N_1 EQU $4E
O_1 EQU $4F
P_1 EQU $50
Q_l EQU $51
R_1 EQU $52
S_1 EQU $53
T_1 EQU $54
uU_l1 EQU $55
V_1 EQU $56
W_l1 EQU $57
X1 EQU $58
Y_1 EQU $59
Z_1 EQU $5A
BLK_1 EQU $20

CALL PROG_B
IN REG, SW

TEST REG,1

JUMP Z, ABC

JUMP asd

ABC:

EINT

STOP: JUMP STOP
asd:

; load data,$FF

; out data, LED_VERIFY
LOAD data, $00
ouT data, eth_reset
CALL DELAY_SMALL

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

LOAD
ouT
Sssst:

LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD

data, $FF
data, eth_reset

ADDR2, 0

ADDRI, 0

DATA, 1 ;144
spi_write

ADDR2, 1 33555;Gateway IP Address
ADDRI, 0

DATA, 192

spi_write

ADDR2, 2

ADDRI, 0

DATA, 168

spi_write

ADDR2, 3

ADDRI, 0

DATA, 0 01
spi_write

ADDR?2, 4

ADDRI, 0

DATA, 1

SPI_WIIte; 533553553553553553555
ADDR?2, 5 ;5;Subnet Mask
ADDRI, 0

DATA, 255

spi_write

ADDR2, 6

ADDRI, 0

DATA, 255

spi_write

ADDR2, 7

ADDRI, 0

DATA, 255

spi_write

ADDR?2, 8

ADDRI, 0

DATA, 0

SPI_WIILE; 533553553553355355355355355
ADDR2, 9 ;55:5:Source Hardware Address
ADDRI, 0

DATA, 0

spi_write

ADDR2, 10

ADDRI, 0

DATA, 8

39

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

CALL
LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD
CALL
LOAD
LOAD

spi_write
ADDR2, 11
ADDRI, 0
DATA, $DC
spi_write
ADDR2, 12
ADDRI, 0
DATA, 1
spi_write
ADDR2, 13
ADDRI, 0
DATA, 2
spi_write
ADDR?2, 14
ADDRI, 0
DATA, 3

ADDR2, $OF
ADDRI, 0
DATA, 192
spi_write
ADDR2, $10
ADDRI, 0
DATA, 168
spi_write
ADDR2, $11
ADDRI, 0
DATA, 0
spi_write
ADDR2, $12
ADDRI, 0
DATA, 9

ADDR2, $01
ADDRI, 4
DATA, $01
spi_write;
ADDR2, $1A
ADDRI, 0
DATA, $06
spi_write
ADDR2, $1B
ADDRI, 0
DATA, $55
spi_write
ADDRZ2, $00
ADDRI, 4

; open

; rX_mem Size
; 4kb

; tx_mem size
;06

; port O is tcp

40

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

LOAD
CALL
LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD
CALL
LOAD
LOAD
LOAD
CALL
LOAD
STORE
data_rcv_int:
LOAD
LOAD

DATA, 1
spi_write
ADDR2, $01
ADDRI, 4
DATA, 2
spi_write
ADDR2, $04
ADDRI, 4
DATA, $13
spi_write
ADDR2, $05
ADDRI1, 4
DATA, $88
spi_write
ADDR2, $12
ADDRI, $04
DATA, $05
spi_write
ADDR2, $13
ADDRI, $04
DATA, $B4
spi_write
ADDR2, $20
ADDRI, $04
DATA, $08
spi_write
ADDR2, $21
ADDRI, $04
DATA, $00
spi_write
ADDR2, $26
ADDRI, $04
DATA, $08
spi_write
ADDR?2, $27
ADDRI, $04
DATA, $00
spi_write
ADDR2, $16
ADDRI, $00
DATA, $01
spi_write
reg, 0

reg, 7

ADDR2, $02
ADDRI, $04

; LISTEN

; Socket Source Port

; Socket Source Port

; LISTEN

41

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

; load DATA,$01
CALL
OouT

spi_read

data, LED_VERIFY
TEST data, 1
JUMP Z, data_rcv_int

;CALL CONNECTED

data_rcv_intS:
LOAD ADDR2, $02
LOAD ADDRI, $04

; load DATA,$01
CALL
ouT

spi_read

data, LED_VERIFY
TEST data, 4

JUMP Z, data_rcv_intS
big DELAY

big DELAY

LOAD ADDR2, $15
LOAD ADDRI, $00

; CALL
; CALL

CALL spi_read
OouT data, LED_VERIFY
TEST data, 1
JUMP Z, data_rcv_intS
; CALL big DELAY
; CALL big_ DELAY
; CALL big_ DELAY
; CALL big_ DELAY
; CALL big_ DELAY

LOAD ADDR2, $26
LOAD ADDRI, $04
CALL spi_read
STORE data, 62
LOAD ADDR2, $27
LOAD ADDRI, $04
CALL spi_read
STORE data, 63

; call data_rcv_intS12

sdf: LOAD ADDR2, $26
LOAD ADDRI, $04
CALL spi_read
COMP data, $10
JUMP NZ, sdf
STORE data, 62

; STORE data, TX_FLAG

;CALL DATA_232
LOAD ADDR2, $27
LOAD ADDRI, $04
CALL spi_read

; LISTEN

; no of byte revd
; Sn_RX_RSR

; no of byte rcvd
; Sn_RX_RSR

; no of byte rcvd

; Sn_RX_RSR

; no of byte revd
; Sn_RX_RSR

42

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

STORE

data, 63

; STORE data, TX_FLAG
;CALL DATA_232

LOAD
LOAD
CALL
STORE

ADDR2, $28
ADDRI, $04
spi_read
data, 30

:STORE data, TX_FLAG
:CALL DATA_232

LOAD
LOAD
CALL

ADDR?2, $29
ADDRI, $04
spi_read

; STORE data, TX_FLAG
;CALL DATA_232

STORE
FETCH
FETCH
ADD

STORE
FETCH
FETCH
ADD

STORE

data, 31
templ, 30
data, 21
templ, data
templ, 30
templ, 31
data, 22
templ, data
templ, 31

; STORE data, TX_FLAG
; CALL DATA_232

LOAD
LOAD
LOAD
CALL
FETCH
AND
STORE
FETCH
AND
STORE
FETCH
FETCH
ADD
ADD
STORE
STORE
FETCH
FETCH

;ADD ADDRI, 2
FETCH
FETCH
STORE

ADDR2, $02
ADDRI, $04
data, $SFF
spi_write
data, 30
data, $OF
data, 2
data, 31
data, $SFF
data, 3
templ, 2
temp2, 3
temp2, 0
temp1, $60
templ, 2
temp2, 3
ADDR2, 3
ADDRI, 2

templ, 62
temp2, 63
templ, 21

; Sn_RX_RD

; Sn_RX_RD

;62

;63

; gSn_RX_MASK
; get_offset

; gSn_RX_MASK
; get_offset

; get_start_address
; get_start_address

43

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

STORE temp2, 22
tp:
CALL spi_read
; STORE data, TX_FLAG
; CALL DATA_232
LOAD SPI_REG, DATA
CALL CONFIG_DATA
FETCH ADDR2,3
FETCH ADDRI, 2
ADD addr2, 1
ADDC addrl, 0
STORE ADDR2, 3
STORE ADDRI,2
; fetch temp1,62
; fetch temp2,63
FETCH templ, 62
FETCH temp2, 63;
SUB temp2, 1
SUBC templ, 0;
STORE templ, 62
STORE temp2, 63
COMP temp2, 0

>

JUMP Z, tt6
JUMP ag88;
tt6:
COMP templ, 0
JUMP Z,asdl5
ag88:
JUMP tp
asdl5:

LOAD ADDR2,0
LOAD ADDRI, 0

LOAD DATA, 128 ; 144
CALL spi_write
LOAD ADDR2, $28 ; Sn_RX_RD

LOAD ADDRI, $04

CALL spi_read

STORE data, 30

LOAD ADDR2, $29 ; Sn_RX_RD
LOAD ADDRI, $04

CALL spi_read

STORE data, 31

FETCH data, 30

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

>

AND data, $OF ; 2Sn_RX_MASK
STORE data, 2 ; get_offset

FETCH data, 31

AND data, $FF ; gSn_RX_MASK
STORE data, 3 ; get_offset

LOAD ADDR2, $26 ; no of byte revd
LOAD ADDRI, $04 ; Sn_RX_RSR

CALL spi_read

STORE data, 62

LOAD ADDR2, $27 ; no of byte revd
LOAD ADDRI, $04 ; Sn_RX_RSR
CALL spi_read

STORE data, 63

JUMP sssst
askjd: JUMP askjd
DATA_232:
FETCH TEMPIL, TX FLAG
OuT TEMP1, TX_DATA
LOAD TEMPI, $FF
OUT TEMPI, TX_ENABLE
;CALL DELAY_SMALL
;CALL DELAY_SMALL
CALL DELAY_SMALL
CALL DELAY_SMALL
CALL DELAY_SMALL
; CALL DELAY
LOAD TEMPI, $00
ouT TEMP1, TX_ENABLE
CALL DELAY
;CALL DELAY_SMALL
CALL DELAY_SMALL
CALL DELAY_SMALL
RET
; RET
; WRITE status register
spi_write: LOAD temp, 0

OuT temp, cs
LOAD cntrl, 0
LOAD SPI_REG, $F0 ; REN

CALL spi_tx

LOAD SPI_REG, ADDRI1
CALL spi_tx

LOAD SPI_REG, ADDR2
CALL spi_tx

LOAD SPI_REG, DATA
CALL spi_tx

45

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

LOAD temp, 1
OuUT temp, cs
RET

spi_read: LOAD temp, 0
OuT temp, cs
LOAD cntrl, 0
LOAD SPI_REG, $0F ; WREN
CALL spi_tx
LOAD SPI_REG, ADDRI1
CALL spi_tx
LOAD SPI_REG, ADDR2
CALL spi_tx

; LOAD SPI_REG, DATA

; CALL spi_tx
CALL spi_rx
LOAD temp, 1
OuT temp, cs
RET

Spi_tx: ouT SPI_REG, MOSI ;
CALL clk_pulse ; SET
SLO SPI_REG ;
ADD cntrl, 1 ;
COMP cntrl, 8 ;
JUMP C,spi_tx ;
LOAD cntrl, 0 ;
RET ;

; receive

Spi_rx: IN SPI_REG, MISO ;
CALL clk_pulse
SLO SPI_REG
SLA data
ADD cntrl, 1
COMP cntrl, 8
JUMP C, spi_rx
LOAD cntrl, 0
RET

clk_pulse: LOAD temp, | Tieins
OUT temp, clk
LOAD temp, 0
OUT temp, clk
RET

big DELAY: STORE s2, save_s2

STORE 3, save_s3
LOAD s2,$FA
LOAD s3,10

46

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

CALL DELAY_large
WAIT33: SUB s2, 1
JUMP NZ, WAIT33
SUB s3, 1
LOAD s2, $FA
JUMP NZ, WAIT33
FETCH s2, save_s2
FETCH 3, save_s3
RET
DELAY: STORE s2, save_s2
STORE s3, save_s3
LOAD s2, $FA
LOAD 53,10 s L7,
WAIT: SUB s2,1
JUMP NZ, WAIT
SUB s3, 1
LOAD s2, $FA
JUMP NZ, WAIT
FETCH s2, save_s2
FETCH 3, save_s3
RET
DELAY _large: STORE s6, save_s4
LOAD s6,7
WAIT2: CALL DELAY
SUB s6, 1
JUMP NZ, WAIT2
FETCH s6, save_s4
RET
DELAY_SMALL: STORE s6, save_s2
LOAD 6,200
WAIT3: SUB s6, 1
JUMP NZ, WAIT3
FETCH s6, save_s2
RET
CONNECTED:
LOAD TEMPI,C_1
STORE TEMPI, TX_FLAG
CALL DATA_232
LOAD TEMPI,O_1
STORE TEMPI, TX_FLAG
CALL DATA_232
LOAD TEMPI,N_1
STORE TEMPI, TX_FLAG
CALL DATA_232
LOAD TEMPI,N_1
STORE TEMPI, TX_FLAG
CALL DATA_232

47

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

LOAD
STORE
CALL
LOAD
STORE
CALL
LOAD
STORE
CALL
LOAD
STORE
CALL
LOAD
STORE
CALL
RET
PROG_B:
LOAD
OouT
LOAD
ouT
RET
data_rcv_intS12:
LOAD
LOAD
CALL
ouT
TEST
JUMP
RET

TEMPL, E_1
TEMPI1, TX_FLAG
DATA_232
TEMPI, C_1
TEMPI1, TX_FLAG
DATA_232
TEMPI, T_1
TEMPI, TX_FLAG
DATA_232
TEMPIL, E_1
TEMP1, TX _FLAG
DATA_232
TEMPI1,D_1
TEMP1, TX_FLAG
DATA_232

temp1, $00
templ, prog
templ, $FF
templ, prog

ADDR2, $02
ADDRI, $04
spi_read

data, LED_VERIFY

data, 4

NZ, data_rcv_intS12

CCLK _pulse: LOAD temp, 1 3553

ouT
LOAD
ouT
RET
CONFIG_DATA:
CALL
SLO
ADD
COMP
JUMP
LOAD
RET
CHK_STR:
COMP
JUMP
LOAD

temp, CCLK
temp, 0
temp, CCLK

OUT SPI_REG, D_IN
CCLK_pulse ; SET
SPI_REG ;

cntrl, 1 ;

cntrl, 8 ;

C, CONFIG_DATA ;
cntrl, 0 ;
SPI_REG, $2A

NZ, ISR
REG, 78

s

48

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

STORE REG, TEMP_FLAG
CALL PROG_B

JUMP ISR
ISR1:
IN SPI_REG, RX_DATA
OouT SPI_REG, LED_VERIFY
; FETCH REG, TEMP_FLAG
; COMP REG, 78
; JUMP NZ, CHK_STR
CALL CONFIG_DATA
; IN REG, done
; TEST REG, 1
; JUMP NZ, ISR
; LOAD REG,0
; STORE REG, TEMP_FLAG
ISR: ;CALL UR_DATA ;oo
INTRUPT
RETI ENABLE
ORG $3FF
JUMP ISRI1
FLOW CHART:

‘ ESTABISHED? Yes 1
o 2 Receiving ’
R ceived DATA Yes- I Process I 4

Mo

S oA e II Wl

Mo

- Disconnacting
b S - II
: ‘

) &
<)

Figure: 7.2 Flow Chart of W5100 in Server mode

49

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP
Chapter 8
Experimentation

TESTING
After discussing the design details above the board is tested to verify the proper

functioning of the system. Following are the results :

8.1 Initialization of W5100

Fle fdt View Add Fomat Tock Wndow

ITENETE |40 BN BRA B Yy LL S

)

Figure: 8.1 Initialization of W5100

50

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

8.2 FPGA Configuration
D

Twave - default

Fle Edit View Add Format Tooks Window
D#B8 i RRo2 ALY | SuRl] 4 s B u=iARRBTYY
(ZReeq

[£Eey| ¢

Figure: 8.2 FPGA configuration I

T wave - default
Fie Edit Wew Add Fomat Tools Window

1EE8] 4R8N S| ORRE] 44+ B a=ddHE BP Yy
R TR

|2 EA] ¢

Figure: 8.3 FPGA configuration II

51

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

8.3 Procedure

Step 1

Step 2

File Edr View Operstions Options Output Debug Window Help
PHEEX@2EN=|0i (& zo|ww
Fem

X MEACT Procasses x
SeBoundery Scan

SuisSan

St hp

E—

L - —

 todw | i BRSO TE 0 U C)
3 [Welcome ro 1MPACT o o o BN =

SMFACT Vezsion: 10.1.03 HEX. (7] Swp e

Checkam F Vo 2 Hox Dt 77]
PROM e tiame. et]
Locesee: B fiex crte £33 i oa8 parmaey =

(=) (it

52

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

S9Bourdery Sean
S5 SiaveSeny
Select HAF
(] Ao Sebect PROM Devaty
Select SPI PRON| b [125 T
SamiCE Doy b 1226 T+
Mo Operataoms

x [Helcoma to sMBACT
AMPACT Veraiom: 10.1.0%

b wacr W — ——
File Edr View Operstions Options Output Debug Window Help
PHAREX@Ru=[0: @ zo(ww
Femt X MPACT Processes: x

| Modes | Cpmeatons.

x [Helcoma to sMBACT
AMPACT Veraiom: 10.1.0%

53

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP
Step 5

File Edit View Operstions Window Help Bl
GRS T A i@ aolww
Fome: X MPACT Procasess x -
 Boundery Sean
SaveSans

E

]

e

|
i

i

| s | 3 PROM e Foreane

o= —vezsien 0 -mame ~0000°
t

ae

Date madiied

Type

I-MuL2 51500 Flafolder

U Downloads (B [ey D-Map12527 00 Fle folder
L RecePlaces Ui msin b I-Mu12505 P00 Fibe folder Loanch Wieerd
& prepect] 26-Mar-121232PM Fie fokder

B Desitop) temgltes 1011 214 PN File foder
T Libraries U s o, 0 by O-Map121156 ... Fie folder
[Decuments e 1-Mey- 12229 PM Fie fokder
ey 1257 B Fle

e
+\new_£lex_prinses)fedi\fodi_spi\pret_pazimein/

File locatien
Auto Seleet :
Mimber of Data Stream : 1
Mumber of FRGMs : 0

EHD of Beport
4 #%% BATCR CMD : matRttribute ~design -attr name -value "0%

54

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

Step 7

PEHAaExEx nil@ aoclwe
Foms. X MPACT Processes x

23 Boundey Sean [Fattin Cpertiora

] | | Gt i

oo SeactMAP

29 Desktcn Corliprtion

S0rct 571 Contuantin

xeone

(8] #00 fae Fomamer mon_1200

Modea Opereons.

% e Edit View Operstions Window Help LJIJ%

Output Format : mes

ZoadBizession : UE
Basename : Uncizled
File Locataon : Ex\ew flex prinver\fodi\fras_spi\pzo®
alee

epoze
s b et ol
addDevice -p 1 ~file "

di_spi/pred 32.bien
+/nev, n:z):umr.'ekuu nmne;-:m:um.u L2.bdv s
INFC:SHEACT - Elapssd tizs =

deone.
THFO: 1MPACT:501 -

: Aades Device xcisaste successtally. j|

Step 8

% e Edit View Operstions Window Help LM%

Tranern

- IEE T R
Fomes:

gi a2 -lfﬂl.;.n?

X MPACT Proceesss

23 Boundey Sean ol Operntiors o
SiwvaSensl

xcanse
(8] #00 fae Fomamer man_120¢

fmew Fied peiusas/ Sel] Exil_ spt] pesk pas/aatn/uatn 1 b1cn
s fnew, ﬂuymzm‘kwnu apifpred_pes/main/main 12.bict

INFC:SHEACT - Elapsed tise =

deone.

INFOIIMPACT:S0L - *1°: Added Davice xc3s2SUe succesafully. J
Rdd one device. -
[—— L

55

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

Step 9

View Opentions Window Help "
AELahx®E fil® Zolww
[

| unapia Cperatona we
p—

xesuzste
o120t
Add Yahra Dewce...
Reame PROMfie..
ot | Opentirs | B FROM Fis Formater
Gutpat Fommat : st .

Orcicled

1 Ef\neu_flex princer\foai\foas_spi\pros_perimaiaf

Rito Selcer : false
sesn

Mosber of PRGHa : 0
Repore
Jf % BAICH CMD o seTATLIIDUTE -2€81CR -8ITI Dame -valus "0
Le "E:/new flex printer/fedi/fudi spi/prud_par/main/main 12.bic®
mu:uwe:.’nulna #07pres_pez/mataimats_12.Eaxt .

Oporators i POV i Fomater

74 %% BATCH OMD : seChrtribute -configdevice -ACiz PATH -valus "E:\new_flex printex\fdiVfrdi_spi\prtd_pac\maia\/® =
J{ *ww BATCH CHD : stTATCribute -cOBfigitwice -TTZ Bhme -velue "URritled”

Tosal cenfigaraticn bit size = 1353720 bicts.

Tocal contigurwsicn byse size - 165226 boes.

24 == BAICH CHD : cemermce -generic -compressed -spi

: Raded Device §4m successfully

Generaving Pzom file using the following suto generaved Prom(s):
g

Svap bit can only be disabled in Hex file fozmat ealy.

160 58 noT Avellable for generic FRCH. Procesd WAhOuT compressica.
0229500 (169216) byzea loaded up from 0x0
Using user-specified prom size of 65536K
Writing file "E:\new Heijﬂnm\lm\liﬂ A S AT O
Wriving file "E:\new_flex_priccer spi\pre_pa

56

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

Step 11
Converting .mecs file to .hex file

1 Mcs 2 Hex Converter

| 020000040000F4
10000000FFFFFFFFAAIISEEE30008001 00000007 3E
10001 00030016001000000483001 2001000031E55E
100020003001 CO0101C1A0923000C001 00000000F S
100030003000800710000000330002001 0000000065
100040003000300100000001:30004000500044D 2C8
100050000000000000000000000000000000000040
100060000000000000000000000000000000000030
100070000000000000000000000000000000000080
100080000000000000000000000000000000000070
100030000000000000000000000000000000000060
100040000000000000000000000000000000000050
1000E0000000000000000000000000000000000040
1000C0000000000000000000000000000000000030
100000000000000000000000000000000000000020
1000E0000000000000000000000000000000000010
1000F 0000000000000000000000000000000000000
1001000000000000000000000000000000000000EF
10011 00000000000000000000000000000000000DF
1001200000000000000000000000000000000000CF
10013000000000000000000000000000000000008F
10014000000000000000000000000000000000004F
10015000000000000000000000000000000000003F
1001 6000000000000000000000000000000000002F
10017000000000000000000000000000000000007F
10018000000000000000000000000000000000006F
10013000000000000000000000000000000000005F
1001:4000000000000000000000000000000000004F
1001 B000000000000000000000000000000000003F
1001C000000000000000000000000000000000002F
1001 DO00000000000000000000000000000000001 F
1001 E0O0000000000000000000000000000000000F
1001F00000000000000000000000000000000000FF
1002000000000000000000000000000000000000EE
10021 00000000000000000000000000000000000DE

Step 12

Finally transferring data by providing IP address of Controller board

B Open

Port Hao

File Mame

HostLP. Addiess |132163.03 |

7] Clear

[5000 |

|C: YDocuments and Settings' |

57

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

Chapter 9

Conclusion
We Can Configure Remotely placed FPGA using Slave Serial Mode and Ethernet IC
W5100.

9.1 Benefit of Work
It provides a more efficient use of utilizing a single FPGA board for

hardware simulation. It could also place itself in educational establishments where
the prototyping board does not need to be changed from workstation to workstation and
also provides an efficient way of managing expensive FPGA resources. Now a day, this
type of multi-user FPGA board use has much further development until it becomes a
viable multi-userhardware simulation environment.

Such a strategy would bring benefits to FPGA rapid prototyping engineers,
engineers changing workstations or on the move, and distributed design teams posted
around the globe. It could also place itself in educational establishments where the
prototyping board does not need to be changed from workstation to workstation and also

provides an efficient way of managing expensive FPGA resources.

9.2 Final Results

Different programs can be run on target FPGA board. Following are the two
application oriented programs that has been successfully implemented and verified using

this project.

I) Traffic light Controller(TLC)
Following is the source code for the same using VHDL language:

library ieee;
use ieee.std_logic_1164.all;

ENTITY traffic_light IS

PORT(sensor : IN std_logic;
clock : IN std_logic;
red_light : OUT std_logic;
green_light : OUT std_logic;

58

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

yellow_light : OUT std_logic);
END traffic_light;

ARCHITECTURE simple OF traffic_light IS
TYPE t_state is (red, green, yellow);
SIGNAL present_state, next_state : t_state;

BEGIN
PROCESS(present_state, sensor)
BEGIN

CASE present_state IS

WHEN green =>
next_state <= yellow;
red_light <="'0";
green_light <="'1";
yellow_light <='0";

WHEN red =>
red_light <="1";
green_light <="0";
yellow_light <="'0";
IF (sensor ='1') THEN

next_state <= green,
ELSE

next_state <= red;
END IF;

WHEN yellow =>
red_light <="0";
green_light <=0
yellow_light <="1";
next_state <=red;

END CASE,;
END PROCESS;

PROCESS
BEGIN
WAIT UNTIL clock'EVENT and clock ="1";
present_state <= next_state;
END PROCESS;
END simple;

59

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

End Time;
00rs 100ns S00ns W0ns 1300ns 170005 2100ns 2500ns 2900ns 3X0ns 3700ns

mmnnEnEnmnnnnmm
|

Mosr 1| |

Yot 1 _ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ

W gt 0 niininniininn FL
W o | T T T 1 [

Figure: 9.1 Testbench Waveform for TLC

II) 64 Bit RAM(16%4)
Following is the source code for the same using VHDL language:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY ram IS
GENERIC
ADDRESS_WIDTH : integer :=4;
DATA_WIDTH : integer := 8
)
PORT
(
clock: IN std_logic;
data: IN std_logic_vector(DATA_WIDTH - 1 DOWNTO 0);
write_address: IN std_logic_vector(ADDRESS_WIDTH - 1
DOWNTO 0);
read_address: IN std_logic_vector(ADDRESS_WIDTH - 1
DOWNTO 0);
we: IN std_logic;
q: OUT std_logic_vector(DATA_WIDTH - 1 DOWNTO 0)
)
END ram;

ARCHITECTURE rtl OF ram IS

TYPE RAM IS ARRAY(0 TO (2 ** ADDRESS_WIDTH)-1) OF
std_logic_vector(DATA_WIDTH - 1 DOWNTO 0);

SIGNAL ram_block : RAM;
BEGIN

PROCESS (clock)

BEGIN

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

IF (clock'event AND clock ='1") THEN
IF (we ='1") THEN
ram_block(to_integer(unsigned(write_address))) <= data;
q<="00000000";

END IF;
q <= ram_block(to_integer(unsigned(read_address)));
END IF;
END PROCESS;
END rtl;
End Time:
100ns 300ns 500ns 700ns 800ns 1100ns 1300ns 1500ns 1700ns 1900ns
2000 ns
Lol bbb e b b Ly
Al clock
v L |
N CO u

. read_adres...
i write_addre..
Y

“-_““---- !
B ED SR EEED
By nn i

B T

—

Figure: 9.2 Testbench waveform for RAM
9.3 COMPONENT COSTING

S.No. Component Name Cost (Rs) Quantity
1. Ethernet Module 4000 1
2. FPGA 1000 2
3. PCB 800 2
4. Casing 400 1
5. PROM 300 1
6. Power Supply 250 2
7. LCD 200 1
8. MAX 3232 100 1
9. DB 9 Pin 50 1
10. | LM 317 35 6
11. | Miscellaneous 500 1
Total : Rs. 9860/-

61

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP
9.4 FUTURE SCOPE

Future work, include the management of multiple boards and modules on a
rack with only one TCP/IP address or Wi-Fi/ Wi-Max. This would allow remote
control of a rack in a laboratory. If two or more users are waiting for a board and there
are further constant requests for hardware co - simulation, the assignment of the
next user is very much random and there is the possibility for a user never toacquire

the boardand to always be queuing means Deadlock can be there.

To avoiding these problems we can use different available protocols
supported by this process. This is currently unacceptable so therefore some sort
of queuing stack needs to be implemented. Further milestones include queuing of
multiple hardware co-simulations with an option for priorities and also batch
processing of models. Early work also continues on the use of FPGA device
management, whereby devices on a board populated with many FPGAs can be targeted

individually.

62

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

References:

I) Books:

[1] “VHDL Primer” by J. Bhaskar,3™ edition, Prentice Hall .

[2] “VHDL Programming by example” by Douglas Perry, Tata McGraw Hill.

[3] “Designing with FPGA and CPLD” by J.Jenkins, Prentice Hall.

IT) Papers:

[1] Fallside, Smith,” Internet Connected FPGAs”, In Proceedings of the IEEE Symposium
on Field-Programmable Custom Computing Machines, Napa Valley, USA, April
2000.

[2] Brebner, G., Diessel, O., “Chip-Based Reconfigurable Task =~ Management”, In

Proceedings of the 1111 International Conference on Field Programmable Logic
2001, Belfast, Northern Ireland, August 2001.

[3] Jim Burns, Adam Donlin, Jonathan Hogg, Satnam Singh, Mark de, “A Dynamic
reconfiguration run time system” in the S5th Annual IEEE Symposium on FPGAs for
Custom Computing Machines, 1997 Proceedings.

[4] R. Lysecky and F. Vahid, “A study of the speedups and competitiveness of FPGA soft
processor cores using dynamic hardware/software partitioning,” in Proc. Des. Autom. and
Test Eur. Conf., Mar. 2005, pp. 18-23. [13] R. Scrofano, S. Choi, and V. K. Prasanna,
“Energy efficiency of FPGAs and programmable processors for matrix multiplication,”

in Proc. Int. Conf. Field Programmable Technol., Dec. 2002, pp. 422-425.

[5] “SLOPES: Hardware-Software Co synthesis of Low-Power Real-Time Distributed
Embedded Systems With Dynamically Reconfigurable FPGAs” in IEEE Transactions
Computer-Aided Design of Integrated Circuits and Systems, VOL. 26, NO. 3, MARCH
2007

[6] Piyush Kumar Shukla, Dr.S.Silakari, Dr.Sarita.S.Bhadoria, Prof. Anuj Garg,” Multi-
User FPGA - An Efficient Way of Managing Expensive FPGA Resources Using
TCP/IP, Wi-Max/ Wi-Fi in a Secure Network Environment” in Proceedings
of the 15th IEEE International Workshop on Rapid System Prototyping

63

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

[7] Daniel Denning, James Irvine, Derek Stark, Malachy Devlin “Multi-User FPGA Co-
Simulation Over TCP/IP” in Proceedings of the IEEE International Conference on

Field-Programmable Custom Computing Machines.

IIT) WEB Reference:

[1] PicoBlaze 8-bit Embedded Microcontroller User Guide, http://www.xilinx.com

/support/documentation/ip_documentation/ug129.pdf

[2] WIZnet datasheet, http://www.wiznet.co.kr/UpLoadFiles/ReferenceFiles/W5100_
Datasheet_v1.2.2.pdf

64

IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP

Publication & Conferences

“IMPLEMENTATION OF MULTI-USER FPGA ENVIRONMENT OVER TCP-IP”

1) Above paper has been published in “International Journal of Engineering and
Innovative Technology (ISSN: 2277-3754)” in Volume 1 Issue 4, April 2012.

Above paper can be downloaded from following link:

http://www.ijeit.com/vol%201/Issue%204/1JEIT1412201204 24.pdf

2) Above paper has been presented in “International Conference on Novel Horizons
& Prospects Of Industry Institute Interaction” at Shri Shankarprasad Agnihotri
College Of Engineering, Wardha.

3) Presented paper in “ePGCON 2012” at Cummins College Of Engineering,Pune.

65

(“&_
| want morebooks!

Buy your books fast and straightforward online - at one of the world’s
fastest growing online book stores! Environmentally sound due to
Print-on-Demand technologies.

Buy your books online at
www.get-morebooks.com

Kaufen Sie Ihre Biicher schnell und unkompliziert online — auf einer der am
schnellsten wachsenden Buchhandelsplattformen weltweit!
Dank Print-On-Demand umwelt- und ressourcenschonend produziert.

Blicher schneller online kaufen
www.morebooks.de

OmniScriptum Marketing DEU GmbH

Heinrich-Bocking-Str. 6-8
D-66121 Saarbriicken info@omniscriptum.com
Telefax: +49 68193 81 567-9 www.omniscriptum.com

