










Authors Bibliography:

Mr. Mr. Prasad A. Lahare, persuing masters in
Computer Engineering at AVCOE, Sangamner. He has 
received his Bachelors in Computer Engineering from 
MIT, Pune. He is a member of Association of Computer
Machinery (ACM). 

Prof. Pramod R. Gunjal, Assistant Professor in
Electronics and Telecommunication at Amrutvahini
College of Engineering, Sangamner. He has received his

IEEE, IETE. His interest is in Image Processing, VLSI
and Wireless communication. 



ACKNOWLEDGEMENT 

I thank god almighty for guiding me through this work. I would like to thank 

all those who have contributed to the completion of this work done and helped me 

with valuable suggestion for improvement. 

I am extremely grateful to Prof. P. R. Gunjal for his guidance and support. I 

will forever remain grateful for the constant support and guidance extended by him,

in making this report. Through our many discussions, he helped me to form and 

solidify ideas. The invaluable discussions I had with him, the penetrating questions 

he has put to me and the constant motivation, has all lead to the development of this 

work. 

I wish to express my sincere thanks to my parents for supporting and encouraging 

me. I would also like to thank to my friends for listening to my ideas, asking 

questions and providing feedback and suggestions for improving my ideas. 



LIST OF TABLES 

3.1 Time line specifications. 18

5.1 Mathematical model for system. 26

7.1 Pre-processing module testing 49

7.2 Image mapping module testing 50

7.3 Image mapping module testing 50

7.4 GUI testing 51

7.5 System Testing 51

8.1 Performance analysis: Result based on Human Perception 52



�

LIST OF FIGURES 

1.1  Images depicting different emotions 01

2.1 Classical machine learning model 11

2.2 Interactive machine learning (IML) model 12

5.1 Mathematical model for building classifiers 25

5.2 Mathematical model for recognizing mood of any input image 26

5.3 System Architecture 27

5.4 Optimal separating hyperplane 28

5.5 Activity diagram 33

5.6 Sequence diagram 35

5.7 Class diagram 36

5.8 Package diagram 37

5.9 State machine diagram 38

5.10 Component diagram 39

5.11 Deployment diagram 40

5.12 Use case diagram 41

11.1 Screen shot (Application) 57

11.2 Screen shot (Feature Extraction) 58

11.3 Screen shot (Training dataset) 58

11.4 Screen shot (Testing Dataset) 59



ABSTRACT 

Emotion in natural scene images plays an important role in the way humans

perceive an image. Based on the emotion (happiness, sadness, fear, anger etc.) of any 

human being the images that are viewed by that person can have a significant impact in a 

sense that if the person is for example in happy mood and he/she views an image that is

pleasing then he/she would have a better sense of attachment towards that image and would

not accept an image that depicts sadness as an emotion. Although different people may 

interpret the same image in different ways, we still can build a universal classification for

different emotions. Emotion detection in natural scene images basically means that the 

natural scene image should be classified properly based on image semantics. Any image 

can be classified into three levels of semantics (low level, medium level, high level). Our 

task is to bridge the gap between the different levels. This work deals with the color 

component of an image.  

The tasks to be performed are: Build Classifiers for every mood, retrieve low level

semantic information of the chosen image, accordingly classify the image mapping its 

retrieved information. Although different people may interpret the same image in different

ways, we still can build a universal classification for different emotions. However, it is a 

challenging task for any machine to recognize emotion in any natural scene image we still 

can build classifiers which can help the machine to adequately classify images according

to different emotions. 



INDEX 

1. .. 01

1.1 Overview ..... 02

1.2 Classification of Emotion in Natural Scene Image .. 02

      1.2.1 Problem statement .. 03

03

03

04

2. Literature 05

05

05

05

2.4 Computational Framework for mood classification 10

      2.4.1 Machine learning 10

3. 15

15

16

16

16

3.3 Resources 16

16

17

17

17

18

18

18

18

18

18



 19 

 21 

 21 

.. 21 

 21 

 21 

4. ................... 22

 22 

 22 

 22 

 23 

      4.2.1 User Characteristics .... 23 

.. . 23 

4.3 System Features  23 

      4.3.1 Functional Requirements .. 23 

     4.3.2 Non-Function Requirements  24 

 24 

5. System Design  25

5.1 Mathe . 25

      5.1.1 Mathematical Model for  25 

      5.1.2 Mathematical Model for Reco .. 25 

.... 26 

. 27 

5.3 SVM  28 

      5.3.1 The Optimal Separating Hyper plane . 28 

 33 

      5.4.1 Activity Diagram  33 

       5.4.2 Sequence Diagram  34 

. 36 

       5.4.4 Package Diagram .. 37 

.. 38 

      5.4.6 Component Diagram . 39 



. 39

40

. 40

      5.5.2 Use Case Specifications .. 41

6. Coding Technique 45

45

45

7. 47

47

      7.1.1 Objectives of Testing 47

48

49

49

      7.3.2 ... 50

50

      7.3.4 System Tes 51

8. ............... 52

8.1 Testing Result based on Human Perception 52

9. Future Enhancements and ................... 55

9.1 Future Enhancement 55

55

10. Conclusion 56

10.1 Conclusion ... 56

11. 57

11.1 Application . 57

11.2 Feature Extraction- 58

11.3 Training Dataset 58

11.4 Testing Dataset . 59

... 60



CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Emotion in natural scene images plays an important role in the way humans

perceive an image. Based on the emotion (happiness, sadness, fear, anger etc.) of any 

human being the images that are viewed by that person can have a significant impact in a 

sense that if the person is for example in happy mood and he/she views an image that is

pleasing then he/she would have a better sense of attachment towards that image and

would not accept an image that depicts sadness as an emotion. Although different people

may interpret the same image in different ways, we still can build a universal

classification for different emotions [5].

Emotion detection in natural scene images basically means that the natural scene 

image should be classified properly based on image semantics. Any image can be 

classified into three levels of semantics (low level, medium level, high level). Our task is 

to bridge the gap between the different levels. This work deals with the color component 

of an image. The tasks to be performed are: Build Classifiers for every mood, retrieve 

low-level semantic information of the chosen image and accordingly classify the image 

mapping its retrieved information.  

Figure 1.1: Images depicting different emotions. 



Although different people may interpret the same image in different ways, we still 

can build a universal classification for different emotions. However, it is a challenging

task for any machine to recognize emotion in any natural scene image we still can build

classifiers which can help the machine to adequately classify images according to 

different emotions. 

1.2 Classification of Emotion in Natural Scene Image 

1.2.1 Problem statement 

To develop system software that can detect an emotion from a natural scenic

image, a static image without human intervention or manmade objects. 

Area: 

Image Processing.

Artificial Intelligence.

Machine Learning

This work mainly focuses on determining the various parameters such as build 

classifiers for every mood retrieve low-level semantic information of the chosen image 

and accordingly classify the image mapping its retrieved information. 

The modules involved in the Classification of Emotion in Natural Scene Images are as 

follows: 

Module I: Build classifiers for every mood. 

This module of work comes under pattern recognition in image processing where 

classifiers would be built for desired emotions, considering each emotion having some

specific pattern and semantics [5].  

Module II: Retrieve low-level semantic information of the chosen image. 

An image as a whole contains many low-level semantic information like colour, 

texture, shape which are to be retrieved to gain a pattern. 

Module III: Classify the image by mapping its retrieved information. 



This module would give final output of the work by classifying the randomly 

selected natural scene image to one of the desired emotion, for example: happy or sad. 

1.2.2 Need of system development 

Classification of natural scenic images based on emotion is a novice 

implementation in the field of image processing. Though depiction of emotion changes 

from person to person and makes this idea more subjective still it can build a universal 

classification for different emotions. 

This system would play a role of laying a platform on which different applications 

may be designed bringing out brilliant innovations from the world of artificial 

intelligence and image processing [3]. 

Emotion detection in natural scene images basically needed so that the natural 

scene image should be classified properly based on image semantics. Any image can be 

classified into three levels of semantics (low level, medium level, high level). Our task is 

to bridge the gap between the different levels. This work deals with the color component 

of an image. The tasks to be performed are: Build Classifiers for every mood, retrieve 

low level semantic information of the chosen image, accordingly classify the image 

mapping its retrieved information. Although different people may interpret the same 

image in different ways, we still can build a universal classification for different 

emotions. However, it is a challenging task for any machine to recognize emotion in any 

natural scene image we still can build classifiers which can help the machine to 

adequately classify images according to different emotions. 

1.2.3 Application Area and Scope of Research work 

Setting Wallpapers According to Mood: 

We can create a system that accepts the mood of the user and automatically sets 

wallpaper for his/her mood. 

This idea can be further implemented as using the mood as an input as setting the 

system theme accordingly. 



1.2.4 Other Future Applications that can be developed 

E-Greeting Cards: 

We can use the natural scene images in generating greeting cards. According to the 

occasion for which we are sending the card we can directly generate the card by just 

entering the mood for which it being generated. 



CHAPTER 2

LITERATURE SURVEY 

2.1 Product Perspective 

The retrieval accuracy of content-based image retrieval systems, research focus has 

been shifted from designing sophisticated low-level feature extraction algorithms to 

semantics. Attempts to provide a comprehensive survey of the recent technical 

achievements in high-level semantic-based image retrieval has been done. Major recent 

publications are included in this survey covering different aspects of the research in this 

area, including low-level image feature extraction, pattern recognition, similarity 

measurement, and deriving high-level semantic features [2]. 

2.2 Product Features 

The Intended product would typically identify the emotion from a natural scene 

image contained in a database. According to the input of the user for the emotion, these 

images would be scanned and a suitable image would be presented in return. These 

images would contain only natural scenes excluding human intervention. Emotion 

detection in natural scene images basically means that the natural scene image should be 

classified properly based on image semantics. Any image can be classified into three 

levels of semantics (low level, medium level, high level). Our task is to bridge the gap 

between the different levels. This work deals with the color component of an image [3]. 

2.3 Literature Survey 

Research Relevant International Papers Surveyed

Fuzzy GIST Emotion Detection from Natural Scene Image 

Emotion modeling evoked by natural scenes is challenging issue. In this paper, we 

propose a novel scheme for analyzing the emotion reflected by a natural scene, 

considering the human emotional status. Based on the concept of original GIST, we 

developed the fuzzy-GIST to build the emotional feature space. According to the 



relationship between emotional factors and the characters of image, L*C*H* color and 

orientation information are chosen to study the relationship between human's low level 

emotions and image characteristics. And it is realized that we need to analyze the visual 

features at semantic level, so we incorporate the fuzzy concept to extract features with 

semantic meanings. Moreover, we treat emotional electroencephalography (EEG) using 

the fuzzy logic based on possibility theory rather than widely used conventional 

probability theory to generate the semantic feature of the human emotions. Fuzzy-GIST 

consists of both semantic visual information and linguistic EEG feature; it is used to 

represent emotional gist of a natural scene in a semantic level. The emotion evoked by an 

image is predicted from fuzzy-GIST by using a support vector machine, and the mean 

opinion score (MOS) is used for performance evaluation for the proposed scheme. The 

experiments results show that positive and negative emotions can be recognized with 

high accuracy for a given dataset. 

Semantic Categorization and Retrieval of Natural Scene Images 

understanding is still a big problem. In our work we try to reduce this semantic gap in a 

field of natural images. This paper proposes a method for semantic categorization and 

retrieval of natural scene images with and with-out people. These are typical holiday 

pictures from hiking outdoors. Our approach comprises of three stages. Pre-processing 

consists of image segmentation into arbitrary-shaped regions and detection of people in 

the image. In the next stage, local image regions are classified using low level features 

into semantic concept classes such as water, sky or sand. Finally, the frequency of 

occurrence of these semantic concept classes determines the high level scene category. 

[4] For the classification of local image regions, the k-Nearest Neighbor and Support 

Vector Machine classifiers are used. The results obtained by both classifiers are validated 

within the paper. We live in a world where having a digital camera or image scanner is 

not a problem anymore. People are used to take thousands of pictures during their 

vacation and they like to share them at the web galleries or social networks. Due to more 

and more images being generated in digital form around the world, it is important to deal 

with a problem how to extract the semantic content of images and then retrieve these 



images effectively. Humans tend to interpret images using high-level concepts, they are 

able to identify keywords, abstract objects or events presented in the image. However, for 

a computer the image content is a matrix of pixels, which can be summarized by low-

level color, texture or shape features. The lack of correlation between the high-level 

concepts that a user requires and the low-level features that image retrieval systems offer 

is the semantic gap. In our work we try to reduce this semantic gap in a field of natural 

scene images with and without people. These sort of pictures are common in personal 

family albums. Our method can help the people to search in these albums effectively [8]. 

Mining Association Rules between Low-Level Image Features and High Level 

Concepts 

In image similarity retrieval systems, color is one of the most widely used features. 

Users who are not well versed with the image domain characteristics might be more 

comfortable in working with an Image Retrieval System that allows specification of a 

query in terms of keywords, thus eliminating the usual intimidation in dealing with very 

primitive features. In this paper we present two approaches to automatic image 

annotation, by finding those rules underlying the links between the low-level features and 

the high-level concepts associated with images. One scheme uses global color image 

information and classification tree based techniques. Through this supervised learning 

approach, we are able to identify relationships between global color-based image features 

and some textual descriptors. In the second approach, using low-level image features that 

capture local color information and through a k-means based clustering mechanism, 

images are organized in clusters such that images that are similar are located in the same 

cluster. For each cluster, a set of rules is derived to capture the association between the 

localized color-based image features and the textual descriptors relevant to the cluster [7]. 

Content Based Image Retrieval and High Level Semantics 

Semantic gap between the visual features and human semantics has become a 

bottleneck of content-based image retrieval. The need for improving the retrieval 

accuracy of image retrieval systems and narrowing down the semantic gap is high in view 



of the fast growing need of image retrieval. In this paper, we first introduce the image 

semantic description methods, and then we discuss the main technologies for reducing

the semantic gap, namely, object-ontology, machine learning, and relevance feedback. 

Applications of above-mentioned technologies in various areas are also introduced.

Finally, some future research directions and problems of image retrieval are presented. 

Image Retrieval- Trends of the New Age

The last decade has witnessed great interest in research on content-based image 

retrieval. This has paved the way for a large number of new techniques and systems, and 

has expanded its horizon in many directions, resulting in an explosion in the volume of

image data required to be organized. In this paper, we discuss some of the key 

contributions in the current decade related to image retrieval and automated image 

annotation, spanning 120 references. We also discuss some of the key challenges

involved in the adaptation of existing image retrieval techniques to build useful systems

that can handle real-world data. We conclude with a study on the trends in volume and

-topics [6]. 

Estimating information from image colors: an application to digital cameras and

natural scenes

The colors present in an image of a scene provide information about its constituent 

elements. But the amount of information depends on the imaging conditions and on how 

information is calculated. This work had two aims. The first was to derive explicitly 

estimators of the information available and the information retrieved from the color 

values at each point in images of a scene under different illuminations. The second was to 

apply these estimators to simulations of images obtained with five sets of sensors used in

digital cameras and with the cone photoreceptors of the human eye. Estimates were 

obtained for 50 hyper spectral images of natural scenes under daylight illuminants with 

correlated color temperatures 4000 K, 6500 K, and 25000 K. Depending on the sensor

set, the mean estimated information available across images with the largest illumination 

difference varied from 15.5 to 18.0 bits and the mean estimated information retrieved



after optimal linear processing varied from 13.2 to 15.5 bits (each about 85% of the 

corresponding information available). With the best sensor set, 390% more points could 

be identified per scene than with the worst. Capturing scene information from image 

colors depends crucially on the choice of camera sensors. 

Mapping low-level image features to semantic concepts 

In this study, a novel offline supervised learning method is proposed to map low-level 

visual features to high-level semantic concepts for region-based image retrieval. The 

contributions of this study lie in three folds [10].  

(1) For each semantic concept, a set of low-level tokens are extracted from the segmented 

regions of training images. Those tokens capture the representative information for 

describing the semantic meaning of that concept;  

(2) a set of posteriors are generated based on the low-level tokens through pairwise 

classification, which denote the probabilities of images belonging to the semantic 

concepts. The posteriors are treated as high-level features that connect images with high-

level semantic concepts. Long-term relevance feedback learning is incorporated to 

provide the supervisory information needed in the above offline learning process, 

including the concept information and the relevant training set for each concept: an 

integrated algorithm is implemented to combine two kinds of information for retrieval: 

the information from the offline feature-to-concept mapping process and the high-level 

semantic information from the long-term learned memory. Experimental evaluation on 

10,000 images proves the effectiveness of our method. 

Support Vector machines for classification and regression 

This document has been written in an attempt to make the Support Vector Machines 

(SVM), initially conceived of by Cortes and Vapnik, as simple to understand as possible 

for those with minimal experience of Machine Learning. It assumes basic mathematical 

knowledge in areas such as calculus, vector geometry and Lagrange multipliers. The 

document has been split into Theory and Application sections so that it is obvious, after the 



 has been dealt with, how to actually apply the SVM for the different forms of 

problem that each section is centered on. The document's rest section details the problem of 

classification for linearly separable data and introduces the concept of margin and the 

essence of SVM margin maximization. The methodology of the SVM is then extended to 

data which is not fully linearly separable. This soft margin SVM introduces the idea of 

slack variables and the trade-o_ between maximizing the margin and minimizing the

number of misclassified variables in the second section. The third section develops the

concept of SVM further so that the technique can be used for regression. The fourth section 

explains the other salient feature of SVM  the Kernel Trick. It explains how incorporation 

of this mathematical sleight of hand allows SVM to classify and regress nonlinear data 

[12]. 

2.4 Computational Framework for mood classification 

2.4.1 Machine learning 

Machine learning, a branch of artificial intelligence, is about the construction and 

study of systems that can learn from data. The core of machine learning deals with 

representation and generalization. Representation of data instances and functions

evaluated on these instances are part of all machine learning systems. Generalization is

the property that the system will perform well on unseen data instances; the conditions 

under which this can be guaranteed are a key object of study in the subfield of

computational learning theory.

Machine learning allows automatic creation of classifiers, however, the classical

models are generally slow to train, and not interactive.  The classical machine-learning 

(CML) model is summarized in Figure 1.  Prior to the training of the classifier, features

-

done quickly and efficiently.  In this model classification is optimized at the expense of 

longer training time.  Generally, the classifier will run quickly so it can be done real-time.

The assumption is that training will be performed only once and need not be interactive.

Many machine-learning algorithms are very sensitive to feature selection and suffer 

greatly if there are very many features.



Figure 2.1: Classical machine learning model. 

The current approach requires too much technical knowledge on the part of the 

interface designer.  What we would like to do is replace the classical  

Machine-learning model with the interactive model shown in Figure 2.1. This 

interactive training allows the classifier to be coached along until the desired results are 

met.  In this model the designer is correcting and teaching the classifier and the classifier 

must perform the appropriate feature selection [5]. 

The pre-selection of features can be eliminated and transferred to the learning part 

of the IML if the learning algorithm used performs feature selection.  This means that a 

large repository of features is initially calculated and fed to the learning algorithm so it 

can learn the best features for the classification problem at hand.   

The idea is to feed a very large number of features into the classifier training and 

let the classifier do the filtering rather than the human.  The human designer then is 

focused on rapidly creating training data that will correct the errors of the classifier. 



Figure 2.2: Interactive machine learning (IML) model. 

Machine learning algorithms can be divided into two types: 

1. Supervised learning

2. Unsupervised learning

1. Supervised learning

Supervised learning is the machine learning task of inferring a function from labeled

training data. [1] The training data consist of a set of training examples. In supervised

learning, each example is a pair consisting of an input object (typically a vector) and a 

desired output value (also called the supervisory signal). A supervised learning algorithm 

analyses the training data and produces an inferred function, which can be used for 

mapping new examples. An optimal scenario will allow for the algorithm to correctly

In order to solve a given problem of supervised learning, one has to perform the

following steps:

1. Determine the type of training examples. Before doing anything else, the user should

decide what kind of data is to be used as a training set. In the case of handwriting 

analysis, for example, this might be a single handwritten character, an entire handwritten 

word, or an entire line of handwriting. 



2.  Gather a training set. The training set needs to be representative of the real-world use 

of the function. Thus, a set of input objects is gathered and corresponding outputs are 

also gathered, either from human experts or from measurements. 

3.  Determine the input feature representation of the learned function. The accuracy of 

the learned function depends strongly on how the input object is represented. Typically, 

the input object is transformed into a feature vector, which contains a number of features 

that are descriptive of the object. The number of features should not be too large, 

because of the curse of dimensionality; but should contain enough information to 

accurately predict the output. 

4.  Determine the structure of the learned function and corresponding learning algorithm. 

For example, the engineer may choose to use support vector machines or decision trees. 

5. Complete the design. Run the learning algorithm on the gathered training set. Some 

supervised learning algorithms require the user to determine  

certain control parameters. These parameters may be adjusted by optimizing 

performance on a subset (called a validation set) of the training set, or via cross-

validation. 

6. Evaluate the accuracy of the learned function. After parameter adjustment and 

learning, the performance of the resulting function should be measured on a test set that 

is separate from the training set. 

Approaches to supervised learning include: 

Analytical learning 

Artificial neural network 

Bayesian statistics 

Decision tree learning 

Gaussian process regression 

Minimum message length (decision trees, decision graphs, etc.) 

Nearest Neighbor Algorithm 

Symbolic machine learning algorithms 

Support vector machines 

Random Forests 



2. Unsupervised learning

In machine learning, unsupervised learning refers to the problem of trying to   find

hidden structure in unlabeled data. Since the examples given to the learner are unlabeled,

there is no error or reward signal to evaluate a potential solution. This distinguishes 

unsupervised learning from supervised learning and reinforcement learning. 

Unsupervised learning is closely related to the problem of density estimation in statistics. 

However unsupervised learning also encompasses many other techniques that seek to

summarize and explain key features of the data. Many methods employed in 

unsupervised learning are based on data mining methods used to pre-process data [11]. 

Approaches to unsupervised learning include:

Clustering (e.g., k-means, mixture models, hierarchical clustering)

Blind signal separation using feature extraction techniques for

dimensionality reduction (e.g., Principal component analysis, 

Independent component analysis, Non-negative matrix factorization, 

Singular value decomposition). 



CHAPTER 3 

PLAN OF THE WORK 

3.1 Research Scope  

The scope of this work is classification of an emotion in scenic images. (Natural and 

human faces). A natural scene image can be described as an image which has no human 

intervention or any manmade objects to be detected or otherwise be classified based on 

emotions.  An image would be classified as happy or sad as follows: By extracting the 

features of that image and then applying it to a suitable classification algorithm for 

detection of an emotion. 

Emotion detection in natural scene images basically means that the natural scene 

image should be classified properly based on image semantics. Any image can be 

classified into three levels of semantics (low level, medium level, high level). Our task is 

to bridge the gap between the different levels. This work deals with the color component 

of an image. The tasks to be performed are: Build Classifiers for every mood, retrieve 

low level semantic information of the chosen image, accordingly classify the image 

mapping its retrieved information. Although different people may interpret the same 

image in different ways, we still can build a universal classification for different 

emotions. However, it is a challenging task for any machine to recognize emotion in any 

natural scene image we still can build classifiers which can help the machine to 

adequately classify images according to different emotions. 

Application area of work: 

Setting Wallpapers According to Mood: 

We can create a system that accepts the mood of the user and automatically sets 

wallpaper for his/her mood. 

This idea can be further implemented as using the mood as an input as setting the system 

theme accordingly. 



Other Future Applications that can be developed: 

E-Greeting Cards:

We can use the natural scene images in generating greeting cards. According to the 

occasion for which we are sending the card we can directly generate the card by just 

entering the mood for which it being generated. 

3.2 Feasibility study  

3.2.1 Operational 

Time: 

The time required will depend on the size of the input work which may have 

image retrieval, training dataset and also on the review constraints provided by the end 

user. 

Space: 

The space requirements will depend on the size of the source file which in turn

will depend on the size of input work. 

Efficiency: 

Efficiency of the system will depend on review constraint provided by the 

reviewer i.e. End user whether it is correct or not and if not then it can be achieved by 

classifier and training set. 

3.2.2 Financial

The software used in developing the work is free ware i.e. Java and an open 

source Net Beans-IDE by SUN Microsystems. Therefore, the work was found to be cost

feasible. 

3.3 Resources  

3.3.1 Human resources 

This work is performed by a group of four members and all its work was well 

divided between its team members. 



3.3.2 Reusable software components 

The components developed for the work can be distributed for use in other work. 

The components used in this research are as follows:  

SVM module:  

SVM i.e. Support Vector machine is an algorithm used as a classifier hence called 

as a classification algorithm which comes under machine learning. Its segregates an 

image into different classes which further helps in classification of that image into a 

specific emotion. Hence SVM is a module of our work which can be re-used for 

classification purpose in the field of image processing.  

3.3.3 Software tools

Integrated Development Environment (IDE) is useful tool for developing software 

programs. So, Net beans IDE 7.1.2 and Java are being used in this work. 

3.3.4 Requirements 

3.3.4.1 Minimum hardware requirements 

  1] Pentium processor 166 MHz 

  2] 64 MB RAM. 

  3] 750 MB of free disc space for program development. 

  4] 100 MB for program execution. 

3.3.4.2 Software requirements 

1] JDK 1.7.

  2] JRE 1.7. 

  3] Net Beans 7.2 IDE 



3.4 Time Line Schedule specifications: 

Table 3.1: Time line specifications.

3.5 Risk management 

3.5.1 Technology Awareness:

circumstances the developer may develop some new algorithms for generating Emotion

form Natural Scene Images which may have some new features. So the algorithm may 

become obsolete. Hence there is need for technology awareness so that we can include 

the new features.

3.5.2 Risk Factors 

A risk management strategy can be included in work plan or as an independent

Risk mitigation, monitoring and management plan. RMMM plan depicts the work done 

as a part of risk analysis by the software work team. Risk mitigation and monitoring 

commences once the RMMM plan is ready and the risks are documented. The objective 

of risk management is to assist a work team in defining risks, assessing their impact and

probability, and tracking risks throughout a software work. 

Activity Number of Days 

Literature Survey June - August 

Requirement engineering September- November 

Design December - January 

Implementation: 

Training Phase 

Recognition Phase 

Feature Extraction 

Building Classifier 

Pattern Models 

January onwards 

Documentation March- April 



a. For efficient and accurate image detection, the classifier must be trained for 

maximum number of different types of images 

b. Integration and communication of different components must work properly. 

3.5.3 RMMM Plan 

After the risks had been categorized, prioritized and their probability of 

occurrences determined, action was taken to control these risks, which involved 

mitigating and monitoring these risks. The steps taken were: 

1) Strict Completion Deadline 

Risk Mitigation: 

a. Schedule the work in such a fashion that system design is completed first 

so that they get enough time for testing and debugging. 

b. Follow an iterative model of software development. 

Risk Monitoring and Management: 

a. Keep track of schedule slips. 

b. Put in extra hours to make up for the lost hours. 

2) Lack of training on technology and tools 

Risk Mitigation: 

a. Given enough time to learning all technologies required before actual 

coding starts. 

b. Develop sample applications using these technologies. 

Risk Monitoring and Management: 

a. Consult technical guide in case of any problems. 

3) Inexperience in programming software environment 

Risk Mitigation: 



a. Learn the required programming thoroughly before starting with the 

coding. 

b. Code simple applications using the new programming languages. 

Risk Monitoring and Management: 

a. Consult the technical guide in case of any difficulties. 

4) Selection of Images 

 Risk Mitigation 

a. Select different types of natural images. 

b. Try to remove every type of impurities available in image. 

Risk Monitoring and Management 

a. Keep a track of different types of images. 

5)  Feature Extraction 

Risk Mitigation: 

a. Implement the different types of algorithm. 

Risk Monitoring and Management: 

a. Test the output which is generated by the algorithm. 

b. Modify algorithm when needed for efficiency. 

6) Image Recognition 

Risk Mitigation: 

a. Train the network for maximum possible patterns. 

Risk Monitoring and Management: 

a. Increase the no. of hidden layers if needed. 

b. Training activity must be continued for higher accuracy and efficiency. 



3.6 Functional Specifications 

3.6.1 Internal Interfaces 

The interface design describes how the software communicates within itself, with 

systems that interoperate with it, and with humans who use it. An interface implies a flow 

of information (e.g., data and/or control) and a specific type of behavior. 

1] Training Dataset 

2] Testing Dataset 

3] User Interface 

4] Database 

3.6.2 External interfaces 

3.6.2.1 Hardware Requirements 

1] Pentium processor 166 MHz 

2] 64 MB RAM. 

3] 750 MB of free disc space for program development. 

4] 100 MB for program execution 

3.6.2.2 Software requirements 

1] JDK 1.7.

2] JRE 1.7.

3] NetBeans7.2 IDE.



CHAPTER 4

SOFTWARE REQUIREMENT AND ANALYSIS 

4.1 Introduction 

4.1.1 Purpose 

Emotion in natural scene images plays an important role in the way humans

perceive an image. Based on the emotion (happiness, sadness, fear, anger etc.) of any 

human being the images that are viewed by that person can have a significant impact in a 

sense that if the person is for example in happy mood and he/she views an image that is

pleasing then he/she would have a better sense of attachment towards that image and

would not accept an image that depicts sadness as an emotion. Although different people

may interpret the same image in different ways, we still can build a universal

classification for different emotions.  

4.1.2 Research Scope 

Emotion detection in natural scene images basically means that the natural scene 

image should be classified properly based on image semantics. Any image can be 

classified into three levels of semantics (low level, medium level, high level). Our task is 

to bridge the gap between the different levels. This work deals with the color component 

of an image. The tasks to be performed are: Build Classifiers for every mood, retrieve 

low level semantic information of the chosen image, accordingly classify the image 

mapping its retrieved information. Although different people may interpret the same 

image in different ways, we still can build a universal classification for different

emotions. However, it is a challenging task for any machine to recognize emotion in any 

natural scene image we still can build classifiers which can help the machine to

adequately classify images according to different emotions. 

Application Area of the work: 

Setting Wallpapers According to Mood:



We can create a system that accepts the mood of the user and automatically sets 

wallpaper for his/her mood. This idea can be further implemented as using the mood as 

an input as setting the system theme accordingly. 

Other Future Applications that can be developed 

E-Greeting Cards: 

We can use the natural scene images in generating greeting cards. According to the 

occasion for which we are sending the card we can directly generate the card by just 

entering the mood for which it being generated. 

4.2 Detail description 

4.2.1 User Characteristics 

Emotion Detection from Natural Scene Image. 

Semantic Categorization of images. 

Mining Association Rules between Low-Level Image Features and High Level 

Concepts. 

Content Based Image Retrieval and High Level Semantics. 

Image Retrieval- Trends of the New Age. 

Estimating information from image colors: an application to digital cameras and 

natural scenes. 

Mapping low-level image features to semantic concepts. 

4.2.2 Operating Environment 

This software is intended to work on Windows Operating System with standard 

software and hardware requirement. 

4.3 System Features 

4.3.1 Functional Requirements: 

From a database of images sequentially retrieve images and based on selected 

semantic perform feature extraction. 



Apply SVM algorithm on the training dataset for classification of images.

4.3.2 Non-Function Requirements

Allowing the user to insert new images in the database of images.

Providing enhanced GUI improving the applications usability.

Providing Extendibility for integration of facial recognition with natural scene

images increasing the human computer interaction.

4.4 Graphical User Interfaces 

The GUI implemented in this work depicts the following functionality:

Selection of natural scene image dataset.

Display feature extraction of dataset.

Display the testing accuracy of that dataset

Select any input image.

Display the image category.

Display the emotion of image (Happy, Sad, Angry etc.).

Display the response time.

Saving of the intermediate results preformed over the image.



CHAPTER 5 

SYSTEM DESIGN 

5.1 Mathematical Model Specifications

The different functionalities and use cases identified in this work are:  

1. Take Mood as an Input. 

2. Identify Emotion.  

3. Set as Desktop Background. 

5.1.1 Mathematical Model for Building Classifiers: 

Input: Test Images Dataset. 

Processing:  

1. Take input images from database (of the mood for which classifier is to be built). 

2. Apply learning algorithm to generate the patterns matching the input image 

emotion entered to the system. 

Output: Pattern of the entered mood.  

Functions: RetrieveFromDB(), RecogPattern(), StorePattern() 

Figure 5.1:  Mathematical model for building classifiers. 

5.1.2 Mathematical Model for Recognizing Mood of any input Image: 

Input: Unclassified Natural Scenic Images. 

Processing:  

1. Take input Image from a Database of images. 

2. Apply classifier to identify the emotion depicted in the image. 

3. Store the image according to the emotion class.  



Output: Images Sorted according to Emotion.  

Functions: RetrieveFromDB(), classifyImage(), StoreEmotion(). 

Figure 5.2: Mathematical model for recognizing mood of any input image. 

5.1.3 Mathematical Model for System: 

Table 5.1: Mathematical model for system. 

Sr. No Description Observations/ Remarks 

1 Let S be the System 

S={S1, S2} 

Where, 

S1- module that Builds classifiers. 

S2- the module that Recognizing Emotion of any 

input Image. 

S identifies system set

2 S1={D, R, S} 

Where, 

D- Retrieve images from benchmarked dataset. 

R- Recognize Pattern. 

S- Stores the Pattern Recognized. 

S1 is the module that 

builds classifier. 

3 S2={U, C, O} 

Where, 

U- User database of Images. 

C- Classifies the images according to patterns. 

O- Output (Classified Emotion of the Image). 

S2 is the module that 

recognizes emotion of 

any image. 



5.2 System Architecture 

A system architecture or systems architecture is the conceptual model that defines 

the structure, behavior, and more views of a system. An architecture description is a 

formal description and representation of a system, organized in a way that supports 

reasoning about the structure of the system which comprises system components, the 

externally visible properties of those components, the relationships (e.g. the behavior) 

between them, and provides a plan from which products can be procured, and systems 

developed, that will work together to implement the overall system. 

Figure 5.3: System Architecture.

The work is divided into two phases: 

1. Training phase 

2. Recognition Phase 

- To start with the work, training phase first comes into the picture. In training 

phase, the image is taken from the training dataset and then passed to the 

feature extraction block. 

- Feature extraction is responsible for CBIR i.e. content based image retrieval. 

The low level features are extracted from the specific image. 

- In model training block an image would undergo some pattern recognition to 

develop different pattern models. 



- These pattern models would be taken as a defining model to bring out the 

emotion from a new image in further stages. 

- A pattern model would help the classifier to recognize an emotion from a new 

image which is not a bench marked image i.e. from the training dataset. 

5.3 SVM Classification 

-class 

problem without loss of generality. In this problem the goal is to separate the two classes 

by a function which is induced from available examples. The goal is to produce a 

class

data, but there is only one that maximizes the margin maximizes the distance between it 

separating hyper plane. Intuitively, we would expect this boundary to generalize well as 

opposed to the other possible boundaries. 

Figure 5.4: Optimal separating hyperplane. 

5.3.1 The Optimal Separating Hyper plane 

 Consider the problem of separating the set of training vectors belonging to two 

separate classes, 



With a hyper plane, 

 The set of vectors is said to be optimally separated by the hyperplane if it is 

separated without error and the distance between the closest vectors to the hyperplane is 

maximal. 

 There is some redundancy in Equation 2.2, and without loss of generality it is 

appropriate to consider a canonical hyperplane (Vapnik, 1995), where the parameters w, 

b is constrained by, 

 This incisive constraint on the parameterization is preferable to alternatives in 

simplifying the formulation of the problem. In words it states that: the norm of the weight 

vector should be equal to the inverse of the distance, of the nearest point in the dataset to 

the hyperplane. The idea is illustrated in Figure, where the distance from the nearest point 

to each hyper plane is shown. 

A separating hyperplane in canonical form must satisfy the following constraints, 

The distance d (w, b; x) of a point x form the hyperplane (w, b) is, 

The optimal hyperplane is given by maximizing the margin, 

of equation 2.4, The margin is given by,  

 Hence the hypeplane that optically separate the data is one that minimizes  

          



It is independent of b becouse provided Equation 2.4 is satisfies (i.e. it is a sepaprating 

hyperplane) changing b will b will move it in the normal direction to itself. Accordingly the 

margiin remains unchanged but the hyperrplane is no longer optimal in that it will be nearer to 

one class than other. To consider how minimising Equation 2.7 is equivalent to implimenting the 

SRM pronciple, suppose that the following bound holds, 



-



-



5.4 UML Diagram

5.4.1 Activity Diagram

The activity diagram describes the overall behavior and flow of the system. There 

is separate activity diagram for each type of assignment statements found in the source 

program. 

Figure 5.5: Activity diagram 



Explanation: 

An input of an image is given from the set of database containing two fragments, 

one as the training dataset and another as the end user input.

Analyze the particular image in terms of low level semantics.

The specific image is put through different levels of segmentation.

Retrieval of low level semantics in terms of color, hue, Chroma, luminance, 

brightness, contrast.

Apply Support Vector Machine (SVM) classifier to classify the image into 

regions.

This classifier would then identify the mood of an image.

Store this image in classified model respectively.

4.2 Sequence Diagram 

The sequence diagram describes the sequence of the processes taking place and 

interaction between different modules. A sequence diagram is a kind of interaction 

diagram that shows how processes operate with one another and in what order. It is 

a construct of a Message Sequence Chart. A sequence diagram shows object interactions 

arranged in time sequence. It depicts the objects and classes involved in the scenario and 

the sequence of messages exchanged between the objects needed to carry out the 

functionality of the scenario. Sequence diagrams are typically associated with use case 

realizations in the Logical View of the system under development. Sequence diagrams 

are sometimes called event diagrams, event scenarios, and timing diagrams. 



Figure 5.6: Sequence diagram 



5.4.3 Class Diagram 

The class diagram describes the different classes of objects in our system. The 

class diagram is the main building block of object oriented modeling. It is used both for 

general conceptual modeling of the systematics of the application, and for detailed 

modeling translating the models into programming code. Class diagrams can also be used 

for modeling. The classes in a class diagram represent both the main objects, interactions 

in the application and the classes to be programmed. In the design of a system, a number 

of classes are identified and grouped together in a class diagram which helps to determine 

the static relations between those objects. With detailed modeling, the classes of the 

conceptual design are often split into a number of subclasses.

Figure 5.7: Class diagram 



5.4.4 Package Diagram

The package diagram shows that our system uses 2 main packages found in our 

work i.e. User visible package and system package. 

Figure 5.8: Package diagram 



5.4.5 State Machine Diagram 

The State Machine diagram shows the transition of states of the system based on

processes taking place. 

Figure 5.9: State machine diagram 



5.4.6 Component Diagram 

Component diagram depicts how components in our system are wired together to 

form larger components and/or software systems. This diagram illustrates the structure of 

our system in terms of its components. 

Figure 5.10: Component diagram 

5.4.7 Deployment Diagram 

A deployment diagram in the unified modeling language models the physical 

deployment of artifacts on nodes. To describe a web site, for example, a deployment 

diagram would show what hardware components ("nodes") exist (e.g., a web server, an 

application server, and a database server), what software components ("artifacts") run on 



each node (e.g., web application, database), and how the different pieces are connected 

(e.g. JDBC, REST, RMI). The nodes appear as boxes, and the artifacts allocated to each 

node appear as rectangles within the boxes. Nodes may have sub nodes, which appear as 

nested boxes. A single node in a deployment diagram may conceptually represent 

multiple physical nodes, such as a cluster of database servers. 

Figure 5.11: Deployment diagram

5.5 Use Case 

5.5.1 Use Case Diagram 

Our use case diagram shows the different use cases pertaining to the various 

functions performed by our system. 



Figure 5.12: Use case diagram 

5.5.2 Use Case Specifications 

Use case 1: Select Image according to Mood 

Primary Actor: User 

Precondition:  

       A database containing collection of images categorized according to a specific 

mood. 

Main Scenario: 



1. User specifies mood or emotion.

2. The system provides the user with set of images matching and

categorized according to the mood.

Alternate Scenario: 

      No such image of desired mood is found in the database and return with no

images found. 

Post condition: 

1. Set of images with user desired mood. OR

2. No Images found.

Use case 2: Select and Set Image as Wallpaper. 

Primary Actor: End User. 

Precondition: 

      The user needs to specify the mood for natural scene image. There must be an 

availability of the required image in the database. 

Main Scenario: 

1. The system would provide the user with set of images matching to the mood

given.

2. The user would select an image from the set which would be applied as wallpaper

respectively.

Alternative Scenario: 

The system would provide user with no images. 

Post condition: 

The selected image would be applied as desktop background. 

Use case 3: Retrieve Low Level Semantics. 

Primary Actor: Categorizer 



Precondition: 

 Image should be converted to grey-scale. 

Main Scenario: 

The image is categorized on the basis of different parameters like Edge, Texture 

and Color with the help of classifiers.  

 Post condition: 

 This categorization would be stored to database in the form of Image information.  

Use case 4: Identify Mood. 

Primary Actor: Identifier 

Precondition: 

 The low level Semantics of an image is retrieved and is categorized on the basis 

of its parameters by the categorizer.

 Main Scenario: 

1. The system will differentiate the image to different parameters. 

2. On the basis of these parameters the identifier will identify the mood of an 

Image. 

Post condition: 

The identified mood will be set as a mood description of an image and will be 

updated to the database for further categorization. 

Use case 5: Match Predefined Image Rules. 

Primary Actor: Identifier. 

Precondition: 

 The mood of an image is identified by the Identifier. 

Main Scenario: 



The identified mood of an image will be matched to the input i.e. the emotion 

specified by the user.  

Alternative Scenario:

The mood of a specific image is not identified by the identifier. 

Post condition: 

If the emotion user specified matches the predefined image rules the image 

desktop background. 



CHAPTER 6 

CODING TECHNIQUE 

6.1 Code specification 

Software used: 

This work is developed using the Java technology which is an object-oriented,

platform-independent, multithreaded programming environment. Java SE 7 (JDK 1.7 and 

JRE 1.7) is used for the work. Integrated Development Environment (IDE) is useful tool 

for developing software programs. The Net Beans Platform is a reusable framework for

simplifying the development of Java Swing Desktop Applications. 

So, Net beans IDE 7.1.2 and Java are being used in this work. 

6.2 Coding Style 

Coding conventions are a set of guidelines for a specific programming 

language that recommend programming style, practices and methods for each aspect of a 

piece program written in this language. These conventions usually cover file 

organization, indentation, comments, declarations, statements, white space, naming 

conventions, programming practices, principles, programming, architectural best practices, 

etc. These are guidelines for software structural quality. Software programmers are 

highly recommended to follow these guidelines to help improve the readability of 

their source code and make software maintenance easier. Coding conventions are only 

applicable to the human maintainers and peer reviewers of a software work. Conventions 

may be formalized in a documented set of rules that an entire team or company follows, 

or may be as informal as the habitual coding practices of an individual. Coding 

conventions are not enforced by compilers. As a result, not following some or all of the 

rules has no impact on the executable programs created from the source code. 



The following coding standards are used: 

1. The normal coding style for variable naming is used in Java coding. All the variables 

are consistent through the programs. 

2. Declaration of the variable is supplemented with a comment describing its usage and 

purpose. 

3. Each function is supported with a comment to describe its functionality. 

4. Each call of the function has an attached comment that tells what all parameters are 

passed and what each parameter means. 

5. Standard procedure for indentation has been followed. 

6. Code has been modularized to support maximum reuse. 



CHAPTER 7

SYSTEM TESTING 

7.1 Test Specification 

7.1.1 Objectives of Testing 

         Software testing is an important element of software quality assurance and 

represents ultimate review of specification, design and coding of the system. 

          A successful test is one that reveals errors that are yet undiscovered. Testing 

demonstrates that software functions behave according to specification and also that the 

performance requirements have been met also the data collected while testing provides a 

good indication of software reliability and quality. It is general principle of testing that all 

tests should be traceable to the customer requirements. 

Following rules serve well as testing objectives:  

. Executing all the modules with intent of finding errors. 

. Testing all the modules to find an as yet undiscovered error. 

. Testing that specifications are implemented as documented. 

. Check that the documented specifications are what the business needs. 

. Check that the system performs in the desired manner in the target environment. 

Testing Principles: 

. All tests should be traceable to customer requirements. 

. Tests should be planned long before the testing begins. 

. To be most effective a third should carry out the testing. 

. Testing should begin from requirement gathering phase. 

. Testing should be left at the end of the system development like cycle. 

. Continuous testing concept should be applied instead of Big Bang Testing.    



As the potentials failure cases errors are discovered and corrected the reliability of 

the product increases. Thus by testing we can ensure better quality of the product, which 

in turn increases its chance of acceptance by the customer. 

7.2 Testing Plan: 

Software test plan is the document that defines the overall approach and 

objectives of testing for the SUT (System under Test). This document provides the 

directions of all the testing activities. Test plan to be created at the beginning of the 

Requirements phase and contains Test Scope, Test Objectives, Test Design, Test 

Schedules and Test Tools details. The first task is to establish, and seek confirmation 

from the customer, clear understandings of the work and its deliverables.  

Exhaustive analysis will ensure that there is no mismatch between our 

understandings and the customer requirements. The entire relevant product, interface, 

components, and other external dependences are identified timeframe for delivering the 

result is computed. The key steps considered while creating a test plan are: 

Define release criteria. 

Test Scope and Objectives. 

What is to be tested and what is not to be tested. 

Test design. 

Test tools to be used. 

Defect tracking system. 

Outline and prioritize the testing effort. 

Identify resource requirements at various stages of testing. 

Set up calendar based activity plan. 

The biggest challenge is to ensure that there are no product failures or production 

delays due to inadequate testing. Time to market and quality are paramount and for 

number of devices, can meet your requirements and provide customized testing services 

to fulfill your needs. 



 The best approach to testing is to start with basic functionality and gradually add 

levels of complexity at each successive stage. As each test completes the result is 

documented and verified against the work requirements. Any problem if found, should be 

investigated and resolved. 

7.3 Testing Strategy 

early testing focuses on a single component and applies white and black-box tests to 

uncover errors in program logic and function. After individual components are tested 

they must be integrated. Testing continues as the software is constructed. Finally, a series 

of high order tests are executed once full program is operational. 

7.3.1 Unit Testing 

Unit testing focuses verification effort on the smallest unit of software design-the 

software component or module. The unit test is white box oriented and can be conducted 

in parallel for multiple components. In computer programming, unit testing is a procedure 

used to validate that individual units of source code are working properly. A unit is the 

smallest testable part of an application.

Module 1  Preprocessing Testing 

Table 7.1: Pre-processing module testing 

Sr. 

No 

Test Objective Expected output Actual output 

  1 To check whether color features to be 

extracted. 

Feature extracted. Same as expected 



Module 2  Image Mapping Testing 

Table 7.2:  Image mapping module testing 

Sr.

No 

  Test Objective Expected output Actual output 

1 To check whether the image mapping its

retrieved information 

Image mapped. Same as expected. 

Module 3 Emotion Recognition Testing 

Table 7.3: Emotion Recognition module testing 

Sr 

No 

     Test Objective Expected output Actual output 

1 To check for all images emotion if

the emotions are recognized

correctly.  

Emotion recognition 

rate should be 100% 

Emotion

recognition rate is

75% 

7.3.2 Validation Testing 

This type of usability testing usually occurs later in the software life cycle, close 

validation usability testing is to evaluate how the product compares to some 

predetermined usability standard or benchmark. Testers want to determine whether the 

software meets the standards prior to release; if it does not, the reasons for this need to be 

established. 

7.3.3 GUI Testing 

GUI software testing is the process of testing graphical user interface-based 

software to ensure it meets its written specifications. This is normally done through the

use of a variety of test cases. 



suite covers all the functionality of the system and also has to be sure that the suite fully 

exercises the GUI itself. 

Table 7.4: GUI testing 

Sr. 

No 

   Test objectives Expected output Actual output 

1 To check whether button click gives

the desired output. 

Desired dialog box 

opens. 

 Same as

expected 

7.3.4 System Testing 

This is type of testing to confirm that all code modules work as specified, and that

system as a whole performs adequately on the platform on which it will be deployed.

System testing is performed by the testers who are trained to plan, execute and report on

application and system code. 

Table 7.5: System Testing 

Sr. 

No 

  Test Objective Expected output Actual output 

1 To check for all images emotion if

the emotions are recognized

correctly.  

Emotion recognition 

rate should be 100% 

Emotion

recognition rate is

85% 



CHAPTER 8 

PERFORMANCE MEASUREMENTS 

8.1 Testing Result based on Human Perception 

Table 8.1: Performance analysis:  Result based on Human Perception

Images

Output

Expected 

Emotion Detected by a Particular Age Group

(10 people in each group) 

Majority 

say  

12-25 25-40 41-60 

Happy Sad Happy Sad Happy Sad 

Happy 

Grass 

8 2 7 3 8 2 Happy 

Sad Grass 3 7 1 9 2 8 Sad 

Happy 

Sky 

10 0 9 1 8 2 Happy 



Happy 

Tree 

6 4 7 3 7 3 Happy 

Sad Tree 3 7 2 8 1 9 Sad 

Happy 

Water 

7 3 6 4 9 1 Happy 

Sad Rock 1 9 2 8 2 8 Sad 

Sad Sky 1 9 0 10 1 9 Sad 



By above performance analysis we observe that even though the matter of 

emotion interpretation differs from person to person, still an emotion of a particular 

pattern image can be universally identified.  



CHAPTER 9 

FUTURE ENHANCEMENTS AND APPLICATIONS 

9.1 Future Enhancement 

Our application works only for two emotions which is happy and sad. It can be 

enhanced in future to detect all other emotions like angry, gloomy, chirpy etc.  

Emotion detection in natural scene images basically means that the natural scene 

image should be classified properly based on image semantics. Any image can be 

classified into three levels of semantics (low level, medium level, high level). Our task is 

to bridge the gap between the different levels. This work deals with the color component 

of an image. The tasks to be performed are: Build Classifiers for every mood retrieve low 

level semantic information of the chosen image accordingly classify the image mapping 

its retrieved information. Although different people may interpret the same image in 

different ways, we still can build a universal classification for different emotions. 

However, it is a challenging task for any machine to recognize emotion in any natural

scene image we still can build classifiers which can help the machine to adequately 

classify images according to different emotions. 

9.2 Proposed Applications 

E-Greeting Cards: 

We can use the natural scene images in generating greeting cards. According to the 

occasion for which we are sending the card we can directly generate the card by just 

entering the mood for which it being generated. 



CHAPTER 10

CONCLUSION 

10.1 Conclusion 

Emotion of an image depicting natural scene is identified correctly by our work.

The features of the images were successfully extracted which were then given to the 

classification algorithm which is a Support Vector machine algorithm to segregate the 

image into classes and therefore detect the emotion of an image respectively.  

Classification of emotions based on natural scene images is a new concept in an

innovative field of Image Processing domain. Image processing domain has always

proven to be challenging criteria in field of research and development. This work

demands a thorough study of every concept related to Image retrieval, emotion detection

and   CBIR (Content Based Image Retrieval) technique. Emotion in natural scene images

plays an important role in the way humans perceive an image. Based on the emotion 

(happiness, sadness, fear, anger etc.) of any human being the images that are viewed by 

that person can have a significant impact in a sense that if the person is for example in

happy mood and he/she views an image that is pleasing then he/she would have a better 

sense of attachment towards that image and would not accept an image that depicts

sadness as an emotion. Although different people may interpret the same image in 

different ways, we still can build a universal classification for different emotions.  



CHAPTER 11

SCREEN SHOTS 

11.1 Application  

 Figure 11.1: Screen shot (Application)



11.2 Feature Extraction-

Figure 11.2: Screen shot (Feature Extraction)

11.3 Training Dataset

Figure 11.3: Screen shot (Training dataset) 



11.4 Testing Dataset-

Figure 11.3: Screen shot (Testing Dataset) 



APPENDIX A

REFERENCES

-Friendly Indexing and 

International Journal of Computer Vision, 56:79 107, 2004. 

-

transactions on Intel-ligent Systems and Technology, 2:27:1 27:27, 2011.  

IEEE transactions on Pattern Analysis and Ma-chine Intelligence, 24:603  619, 2002.  

thesis, Comenius University, Bratislava, Slovakia, March 2006. 

[5] H. B. Kekre, et.al, 

54,

2010.

[6

of Cbir System Base

conference on Intelligentinfor-  178, 

Piscataway, NJ, USA, 2009. IEEE Press.  

[7 nes for Content-Based 

157, April 2007. 

Asymmetric semi-supervised boosting for SVM active 

In Proceedings of the ACM International Conference on Image and 

Vid  188, New York, NY, USA, 2010. ACM. 



Image feature extraction techniques and their application for cbir and 

 Journal of Biology and Biomedical Engineering, 1:6

16, 2007.

[10] Available online: V. Kazemi. Face detector (boosting haarfea-tures), 2010. 

http://www.mathworks.com/matlabcentral/fileexchange/27150\ -face-detector-

boostinghaar-features. 

[11] V. Mezaris, I. Kompat An ontology approach to object-

based 

volume 2, pages II  511 14 vol.3, sept. 2003.  

[12 -Based Image Retrieval 

with High-Level Seman- attern Recognition, 40(1):262  282, 2007. 

[13] Y. Zhuang, X. Liu, plate to support content-based 

In Proceeding of IST and SPIE Storage and Retrieval for Media 

Databases, pages 23 28, 2000. 








