Lecture Notes in Mechanical Engineering

Harshit K. Dave Dumitru Nedelcu *Editors*

Advances in Manufacturing Processes

Select Proceedings of RAM 2020

Lecture Notes in Mechanical Engineering

Series Editors

Francisco Cavas-Martínez, Departamento de Estructuras, Universidad Politécnica de Cartagena, Cartagena, Murcia, Spain

Fakher Chaari, National School of Engineers, University of Sfax, Sfax, Tunisia Francesco Gherardini, Dipartimento di Ingegneria, Università di Modena e Reggio Emilia, Modena, Italy

Mohamed Haddar, National School of Engineers of Sfax (ENIS), Sfax, Tunisia Vitalii Ivanov, Department of Manufacturing Engineering Machine and Tools, Sumy State University, Sumy, Ukraine

Young W. Kwon, Department of Manufacturing Engineering and Aerospace Engineering, Graduate School of Engineering and Applied Science, Monterey, CA. USA

Justyna Trojanowska, Poznan University of Technology, Poznan, Poland

Lecture Notes in Mechanical Engineering (LNME) publishes the latest developments in Mechanical Engineering—quickly, informally and with high quality. Original research reported in proceedings and post-proceedings represents the core of LNME. Volumes published in LNME embrace all aspects, subfields and new challenges of mechanical engineering. Topics in the series include:

- Engineering Design
- Machinery and Machine Elements
- Mechanical Structures and Stress Analysis
- Automotive Engineering
- Engine Technology
- Aerospace Technology and Astronautics
- Nanotechnology and Microengineering
- Control, Robotics, Mechatronics
- MEMS
- Theoretical and Applied Mechanics
- Dynamical Systems, Control
- Fluid Mechanics
- Engineering Thermodynamics, Heat and Mass Transfer
- Manufacturing
- Precision Engineering, Instrumentation, Measurement
- Materials Engineering
- Tribology and Surface Technology

To submit a proposal or request further information, please contact the Springer Editor of your location:

China: Dr. Mengchu Huang at mengchu.huang@springer.com

India: Priya Vyas at priya.vyas@springer.com

Rest of Asia, Australia, New Zealand: Swati Meherishi at

swati.meherishi@springer.com

All other countries: Dr. Leontina Di Cecco at Leontina.dicecco@springer.com

To submit a proposal for a monograph, please check our Springer Tracts in Mechanical Engineering at http://www.springer.com/series/11693 or contact Leontina.dicecco@springer.com

Indexed by SCOPUS. All books published in the series are submitted for consideration in Web of Science.

More information about this series at http://www.springer.com/series/11236

Harshit K. Dave · Dumitru Nedelcu Editors

Advances in Manufacturing Processes

Select Proceedings of RAM 2020

Editors
Harshit K. Dave
S. V. National Institute of Technology
Surat, India

Dumitru Nedelcu Gheorghe Asachi Technical University of Iasi Iasi, Romania

ISSN 2195-4356 ISSN 2195-4364 (electronic) Lecture Notes in Mechanical Engineering ISBN 978-981-15-9116-7 ISBN 978-981-15-9117-4 (eBook) https://doi.org/10.1007/978-981-15-9117-4

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

RAM 2020 Conference Organizing Committee

Chairman

Prof. S. R. Gandhi, Director, SVNIT, Surat

Organizing Secretaries

Dr. Shailendra Kumar, SVNIT, Surat Dr. Harshit K. Dave, SVNIT, Surat

Coordinators

Dr. Amrut S. Mulay, SVNIT, Surat Dr. Pawan Sharma, SVNIT, Surat

Steering Committee

Dr. R. V. Rao, SVNIT, Surat

Dr. H. K. Raval, SVNIT, Surat

Dr. K. P. Desai, SVNIT, Surat

Dr. A. A. Shaikh, SVNIT, Surat

Dr. T. N. Desai, SVNIT, Surat

Programme Committee

- Dr. D. I. Lalwani, SVNIT, Surat
- Dr. J. V. Menghani, SVNIT, Surat
- Dr. Ravi Kant, SVNIT, Surat
- Dr. Dinesh Singh, SVNIT, Surat
- Dr. V. D. Kalyankar, SVNIT, Surat
- Dr. S. N. Pandya, SVNIT, Surat
- Dr. B. N. Sahoo, SVNIT, Surat
- Dr. Sumit Khare, SVNIT, Surat

Advisory Committee

- Dr. K. P. Rajurkar, University of Nebraska, USA
- Dr. Dumitru Nedelcu, University of Iasi, Romania
- Dr. Chintan Vaishnav, MIT, USA
- Dr. J. P. Davim, University of Aveiro, Portugal
- Dr. M. P. Jahan, Miami University, USA
- Dr. H. M. A. Hussein, Helwan University, Egypt
- Dr. Andrew Y. C. Nee, NUS, Singapore
- Dr. Panagiotis Kyratsis, UWM, Greece
- Dr. R. Balasubramaniam, BARC, Bombay
- Dr. Suhas Joshi, IIT Bombay
- Dr. J. Ram Kumar, IIT Kanpur
- Dr. D. Ravi Kumar, IIT Delhi
- Dr. P. M. Pandey, IIT Delhi
- Dr. Anupam Agrawal, IIT, Ropar
- Dr. A. M. Sidpara, IIT Kharagpur
- Dr. K. Hariharan, IIT Madras
- Dr. G. S. Dangayach, MNIT Jaipur
- Dr. Venu Gopal A., NIT, Warangal
- Dr. P. K. Patowari, NIT, Silchar
- Dr. Rajiv Kumar Garg, NIT, Jalandhar
- Dr. P. C. Tewari, NIT, Kurukshetra
- Dr. Vishal Sharma, NIT, Jalandhar
- Dr. H. S. Mali, MNIT Jaipur
- Dr. Prabhat Ranjan, BARC, Bombay
- Dr. U. Chandrasekhar, Wipro3d
- Dr. P. K. Jain, IITDM Jabalpur
- Dr. R. K. Verma, MMMUT, Gorakhpur

List of Reviewers

- Dr. H. K. Raval, SVNIT, Surat
- Dr. K. P. Desai, SVNIT, Surat
- Dr. S. K. Budhwar, SVNIT, Surat
- Dr. P. K. Patowari, NIT, Silchar
- Dr. T. N. Desai, SVNIT, Surat
- Dr. H. K. Dave, SVNIT, Surat
- Dr. J. V. Menghani, SVNIT, Surat
- Dr. Dinesh Singh, SVNIT, Surat
- Dr. M. K. Rathod, SVNIT, Surat
- Dr. Arati Mulay, CoE, Pune
- Dr. S. N. Pandya, SVNIT, Surat
- Dr. A. S. Mulay, SVNIT, Surat
- Dr. B. N. Sahoo, SVNIT, Surat
- Dr. Pawan Sharma, SVNIT, Surat
- Dr. Sudhanshu Kumar, MANIT, Bhopal
- Dr. Prabhat Ranjan, BARC, Mumbai
- Dr. Piyush Gohil, MSU, Baroda
- Dr. V. J. Badheka, PDPU, Gandhinagar
- Dr. K. P. Mehta, PDPU, Gandhinagar
- Dr. Vishal John Mathai, AMCoE, Kerala
- Dr. M. K. Chudasama, GEC, Dahod
- Dr. Dilip B Jani, GEC, Dahod
- Dr. Hiesh Panchal, GEC, Patan
- Dr. M. P. Sutaria, CHARUSAT, Anand
- Dr. J. D. Patel, MEC, Basna
- Dr. Ravi Bhatt, CGPIT, Gujarat
- Dr. Shakil Kagzi, SNPIT, Umrakh
- Dr. K. D. Maniya, CKPCET, Surat
- Dr. Abhay Utpat, SVERI, Pandharpur
- Prof. J. M. Joshi, VGEC, Chandkheda

Preface

Since 2010, Department of Mechanical Engineering at Sardar Vallabhbhai National Institute of Technology, Surat, has been organizing a series of conferences on "Recent Advances in Manufacturing." In order to enable the sharing of knowledge in the areas of manufacturing technologies, we have organized six national conferences on "Recent Advances in Manufacturing" and now we have planned the International Conference on Recent Advances in Manufacturing (RAM-2020). The conference is organized to bring the academicians, researchers and practicing engineers for sharing their experiences in the field of advance manufacturing. RAM-2020 will provide the opportunity for networking among participant institutes/organizations/industries to systematically confront the challenges in mutual areas of interest to advance manufacturing technology in these areas.

The proceedings volumes are published in the Springer series Lecture Notes in Mechanical Engineering in two volumes, viz. Volume 1—Advance Manufacturing Processes and Volume 2—Advance Manufacturing Systems. We also acknowledge the academic support from Prof. Dumitru Nedelcu and Prof. K. P. Rajurkar while editing the volumes 1 and 2, respectively.

As the entire world is facing the threat from corona pandemic, the international as well as interstate travel is restricted. However, we have tried our best to carve out a comprehensive schedule, keynote speakers and oral presentations in both online and offline modes, all of which will facilitate stimulating insightful discussions within the research community. In spite of such a pandemic situation, 60 participants have presented their findings and exchanged ideas related to manufacturing domain.

We are thankful to the conference organizing committee members, the advisory committee members, the reviewers, the session chairs and the volunteers, without whose generous contributions this conference would not number of presentations and number of participants.

x Preface

Most of all, we thank the participants for enriching the international conference with their active participation.

Surat, India

Dr. Shailendra Kumar Dr. Harshit K. Dave Organizing Secretary, RAM-2020

Contents

Proficiency of Electrical Discharge Machining in Fabrication of Microstructures
Promod Kumar Patowari, Siddhartha Kar, Tapas Debnath, and Amit Kumar Singh
Experimental Study of Effect of Machining Parameters on PMMA in Diamond Turning
A Comparative Study of Electro-discharge Drilling Process Using Solid and Tubular Electrodes
Optimization of Process Variables in Plasma Arc Machining of Inconel-718 Alloy Using Taguchi with Grey Relational Analysis
Optimization of WEDM Process Parameters for Aluminium Metal Matrix Material Al+SiC Using MCDM Methods
Multiple Parameter Optimization by Wire Electrochemical Discharge Machining Process on Quartz Glass
Effect of Process Parameters on Etch Depth of Aluminium Material in Photochemical Machining
Quartz Micro-machining Using Wire Electrochemical Spark Machining Process

xii Contents

Stress Relaxation Study of Ultrafine-Grained AA 6061 Alloy Processed Through Combined Constrained Groove Pressing and Cold Rolling	111
K. Changela, K. Hariharan, and R. K. Digavalli	
Effect of Friction Stir Welding Process Parameters on Tensile Strength and Forming Height of Tailor Welded Blanks Sumit Patel, Shalin Marathe, Keyur Desai, and Harit Raval	123
A Brief Review on Formability, Wall Thickness Distribution and Surface Roughness of Formed Part in Incremental Sheet Forming	135
Kiran R. More, Vikas Sisodia, and Shailendra Kumar	133
Parametric Study of Non-axisymmetric Stretch Flanging Process on AA-6061-T6 Sheet	151
Experimental Investigation and Effects of Process Parameters on Forming Time and Forming Accuracy in Incremental Sheet Forming	159
Effect of Operating Parameters on Forces During Backward Flow Forming Process for AA6061 Jaydeep B. Bhatt, Ravi J. Bhatt, Harit K. Raval, and Keyur P. Desai	173
Analysis of TIG-Welded Aluminum Alloys During Single Point Incremental Forming at Different Wall Angles	187
Autogenous TIG Welding of Al-5083-H111 Butt Joint	205
Review on Friction Stir Welding of Polymer to Aluminium Alloys: Process and Properties Rutvik Ghiya and Vishvesh J. Badheka	221
Effect of Process Parameters on Tensile Strength in FSW of Aluminium and Stainless Steel	239
Study of Friction Stir Welding on Aerospace Grade ZE41AMg Alloy and Its Comparison with Laser Beam Welding on ZE41AMg Alloy	249
Adithyan Annamalai, T. R. Kishore Babu, S. Karthikeyan, N. Siddharth, and S. Muralidharan	

Influence of Layer Thickness, Infill Rate and Orientation on Thermal and Structural Loading of FDM Parts Andrei-Danut Mazurchevici, Ramona-Iuliana Popa, Constantin Carausu, Simona-Nicoleta Mazurchevici, and Dumitru Nedelcu	263
Experimental Investigation on Influence of Process Parameters on Mechanical Properties of PETG Parts Made by Fused Deposition Modelling	283
Analysis of Compressive Strength of 3D Printed PLA Part Ashish R. Prajapati, Shilpesh R. Rajpurohit, Naushil H. Patadiya, and Harshit K. Dave	295
An Experimental Study of Influence of Gradient Parameters on Compressive Strength, Stiffness, and Specific Energy Absorption (SEA) of Auxetic Structures Fabricated by FDM	305
Study on Compression Properties of ABS and FPU Parts Printed Using SLA Ravi Teja Karumuri, Harshit K. Dave, Shilpesh R. Rajpurohit, and Ashish R. Prajapati	319
Experimental Investigation on Tensile Properties of Nylon Glass Fibre Material Made Using Fused Deposition Modelling Process	329
Influence of Inter-Lamellar Spacing of Pearlite Phase on Spheroidized Annealed Structure Partha Sarathi Sarkar, Bhavesh Rameshchandra Rana, and Pinkal D. Mistry	343
Review on Banana Fibre-Reinforced Composites Chetan Prakash Chaudhari, Kiran Bhole, and Jayram Gholave	359
Experimental Evaluation of Mechanical Properties of Epoxy Based Composite Material Using Taguchi Method Vishal Naranje, Ajay Rajan Sankar, Sachin Salunkhe, and Bhanudas D. Bachchhav	381
Experimental and Simulation Study on Permeability of Hybrid Composite Prasanth Kottapalli, Rahul Narkhede, Harshit K. Dave, Himanshu V. Patel, and Rajesh kumar Verma	397

xiv Contents

Impact and Flexural Testing of Jute and Flax Fiber Reinforced	
Composites Fabricated by VARTM Process	411
Chandresh B. Kumbhani, Harshit K. Dave, and Himanshu V. Patel	
Influence of Fiber Orientation and Number of Layer on Tensile	
and Flexural Strength of Carbon Fiber-Reinforced Composites	
Fabricated by VARTM Process	421
Himanshu V. Patel, Shripal M. Patel, and Harshit K. Dave	

About the Editors

Dr. Harshit K. Dave is currently Associate Professor at the Department of Mechanical Engineering, S. V. National Institute of Technology, Surat, India. His research interests include Additive Manufacturing Processes; 3D printing filaments & raw materials; Unconventional Machining processes; Micro machining processes; Modeling & optimization of machining processes; Robotics & Automation. He has published more than 100 papers in reputed international journals and conferences proceedings. He has successfully carried out several research projects funded by the DST, MHRD, GUJCOST, NPIU, etc.

Dr. Dumitru Nedelcu is a Professor at the "Gheorghe Asachi" Technical University of Iasi (TUIASI), Romania, Director of TUIASI Doctoral School. He is Manager of Fine Mechanics and Nanotechnology Laboratory, President of ModTech Professional Association, ModTech International Conference and Editor-in-Chief of the International Journal of Modern Manufacturing Technologies and Advanced Engineering Forum. He was a Visiting Professor at TAT, Institute of Engineering, Tokyo, Guest Professor at Osaka University, Japan and Grenoble Institute of Technology, France. He had Erasmus teaching internships in prestigious universities from Poland, Italy and Mexico. In October 2016 he was accepted as Visiting Professor at the Silesian University of Technology, Gliwice, Poland. As far as research is concerned, he coordinated 15 national and international projects as project manager/responsible. He has published more than 180 scientific papers on ISI and BDI journals and international conferences proceedings.

Effect of Process Parameters on Tensile Strength in FSW of Aluminium and Stainless Steel

Niraj Kumar, Dhrupal Kotadiya, Vishvesh J. Badheka, and Vijay S. Gadakh

1 Introduction

Presently, different types of metals, ceramics and compounds can be joined together but still there are many unsolved issues in the joining due to their different thermal, mechanical and structural properties. On the contrary, there is an increasing demand towards the use of dissimilar joints in shipbuilding, military vehicles, aerospace and automobile industries. The industry acceptable sound joint is a major concern where the joint quality has given more priority than other concerns. Honda Accord used dissimilar joint of Aluminum and steel where they achieved weight reduction with increased fuel efficiency [1]. To date, many works are related to join dissimilar materials using different joining processes but the joint is a big challenge due to the brittle intermetallics formation [2]. As mentioned joining of Aluminium and steel is complex due to different thermal properties, dissimilar thermal expansion, heat capacity and thermal conductivity, lattice transformation, large difference between the melting points (660 °C for Al alloy and 1497 °C for steel) and nearly zero solid

N. Kumar (⋈) · D. Kotadiya

Department of Mechanical Engineering, Silver Oak College of Engineering and Technology, Ahmedabad, Gujarat 382481, India

e-mail: nk365624@gmail.com

D. Kotadiya

e-mail: dhrupalkotadiya.me@socet.edu.in

V. J. Badheka

Department of Mechanical Engineering, Pandit Deendayal Petroleum University, Gandhinagar,

Gujarat 382330, India

e-mail: vishvesh.badheka@spt.pdpu.ac.in

V. S. Gadakh

Department of Production Engineering, Amrutvahini College of Engineering, Ahmednagar, SPPU, Pune, Maharashtra 422608, India

e-mail: vijay.gadakh@avcoe.org

© The Author(s), under exclusive license to Springer
Nature Singapore Pte Ltd. 2021

H. K. Dave and D. Nadalan (eds.). A drawner in Manufacturing

239

H. K. Dave and D. Nedelcu (eds.), *Advances in Manufacturing Processes*, Lecture Notes in Mechanical Engineering, https://doi.org/10.1007/978-981-15-9117-4_18

solubility of iron in aluminium are creating the large discrepancy between the metals causing distortion, formation of the cavities and cracks, leading to the reduction of the mechanical properties after the joining processes [3]. Laser roll bonding [4], friction welding [5], FSW [6–10], laser brazing/welding [11], and laser pulse welding [12] are the processes employed till date to join different grades of the steels to the aluminum alloys.

The objective of the present work is to find process window to get defect-free welds and to study the effect of process parameters namely tool rotational speed (TRS) and weld speed (WS) on the FSWed joint strength of aluminium alloy (AA 6061) and austenitic stainless steel (AISI 304). Literature on FSW of these material combinations was reported. However, Bang et al. [13] studied conventional FSW and GTAW assisted FSW by considering effect of TRS on mechanical properties and microstructure of the joints. Similarly, Harwani and Badheka [14] investigated the effect of tool shoulder size on the mechanical properties and microstructure of the joints. Ghosh et al. [15] joined these materials using different TRS. Bang and Bijoy [16] have done thermal studies of TIG assisted FSW using three-dimensional finite element analysis. Ogawa et al. [17] have studied residual stress measurements for these weld materials. The motivation behind to do FSW experiments on these materials is that reported literature lacks to make process windows to get defect-free welds by considering effect of individual process parameters on the mechanical properties.

2 Experimental Procedure

A $100 \times 50 \times 3$ mm thick plate of AA 6061-T651 and AISI 304L was used as a workpiece material for FSW. The chemical composition of AA6061-T651 is 1.03% Mg, 0.56% Si and 0.12% Mn and AISI 304 is 18.78% Cr, 8.2% Ni and 1.69% Mn [14]. The tensile strength of 668 and 302 MPa was found for AISI 304 and Al 6061-T651, respectively. Al 6061-T651 temper is solution heat-treated artificially aged where the aluminium material is extruded and given 1-3% stretching, which relives the internal residual stresses. The experiments were conducted modified vertical milling machine shown in Fig. 1 at Welding Research Laboratory of School of Technology, PDPU, Gandhinagar. The tilt angle (TA) (2°), Tool offset (2 mm) towards Aluminium on advancing side (AS), plunging depth (0.1 mm), and dwell time of 30 s were kept constant.

The values of the FSW process parameters that have varied during the execution of experiments are shown in Table 1. Based on previous work [14] and pilot experimentation the working range was identified.

During experiments, a tool of an unthreaded tungsten carbide alloy tool (88% WC-12% Co by weight) is employed with flat conical shoulder having shoulder diameter of 18 mm, root and tip pin diameter as 5 mm and 3 mm, and pin length of 2.8 mm is shown in Fig. 2 [14]. The tool material was procured from Sinter Sud Pvt. Ltd., Italy and was given cryogenic heat treatment after machining for enhancing


Fig. 1 Modified vertical milling machine employed for FSW

Table 1 Weld parameters and their levels

Factors	Level 1	Level 2	Level 3	
TRS (rpm)	545	765	1070	
WS (mm/rev)	20	31.5	50	
TA (°)	1	2	3	

Fig. 2 FSW tool

N. Kumar et al.

the hardness. The hardness of the tool was 92.8 HRC, and the torsional resistance was about 2100 N/mm². A stainless steel fixture (having dimensions $230 \times 195 \times 25$ mm) was specially designed for the FSW of Al plates [14], as shown in Fig. 3a.

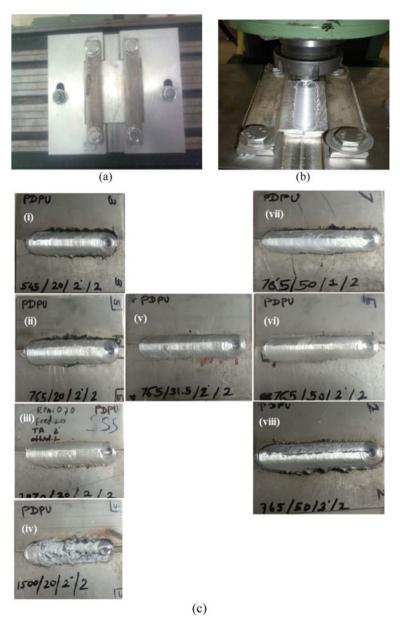


Fig. 3 a FSW Fixture, b experimentation during welding and c welded samples

Figure 3b, c shows the experimental setup for joining Aluminum and steel along with experimentation during welding and FSWed joints at different process conditions. To measure the temperature during the process, two holes were drilled 2 mm away from the nugget zone and two K-type contact thermocouples were inserted in the holes based on past experience, one on the advancing and one on the retreating side (RS). Three tensile specimens were prepared from a joint as per ASTM E8/E8M-11 standard and were tested at Electrical Research & Development Association (ERDA), Baroda with the help of a well-calibrated Universal Testing Machine.

3 Results and Discussion

In order to study the effect of individual process parameter on the joint tensile strength, bottom-up approach [18] was employed by exploring the Table 1. Firstly, TRS was varied keeping WS (20 mm/min) and TA (2°) constant (see Fig. 3ci–iv). Later WS was varied keeping TRS (765 rpm) and TA (2°) constant (see Fig. 3cv, vi). Lastly, TA was varied keeping TRS (765 rpm) and WS (50 mm/min) constant (see Fig. 3cvii, viii) A total eight number of experiments were performed, out of which three conditions showed defective joints (see Fig. 3civ, vii and viii) hence their mechanical properties were not evaluated and not shown in Table 2. The defective joints were produced due to high heat input. The details of process parameters and their corresponding tensile strength are shown in Table 2. All the joints were failed in the weld zone during tensile testing.

3.1 Effect of Tool Rotational Speed on Tensile Strength

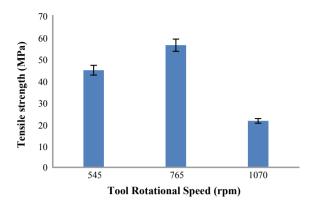
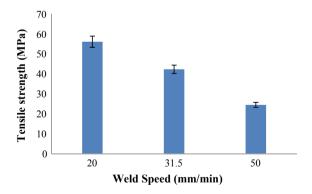

The effect of tool rotational speed on tensile strength is shown in Fig. 4. The maximum joint tensile strength was observed at TRS of 765 rpm WS of 20 mm/min. This can be attributed due to the sufficient heat input in the weld region [13, 15, 19]. Furthermore, welding defects were observed at a higher value of TRS of 1070 rpm due to excessive

Table 2 Tensine strength and peak temperature of the second wed joint								
S. No	TRS	WS	TS (MPa)			Avg. TS	Peak temp. (°C)	
			Trial 1	Trial 2	Trial 3	(MPa)	RS (steel)	AS (Al)
1	545	20	22.514	16.785	44.647	27.982	328	194
2	765	20	35.13	31.752	56.151	41.011	345	197
3	765	31.5	30.178	42.315	34.115	35.536	298	170
4	765	50	24.457	11.391	9.716	15.188	244	188
5	1070	20	13.102	13.102	21.349	15.851	328	178

Table 2 Tensile strength and peak temperature of Al-Steel FSWed joint

N. Kumar et al.

Fig. 4 Effect of tool rotational speed on FSWed Al-Steel joint



softening of the weld materials. These welding defects are observed due to improper materials flow and mixing [20].

3.2 Effect of Weld Speed on Tensile Strength

The weld speed has significant role in the mechanical properties of FSW of Al-steel joints. From Fig. 5, it has been found that increasing the weld speed decreases the tensile strength of the joint. Increasing the weld speed decreases the heat input in which insufficient intermixing of the material take place and thereby weakens the joint.

Fig. 5 Effect of weld speed on FSWed Al-Steel joint

3.3 Effect of Tool Rotational Speed and Weld Speed on Peak Temperature

The effect of tool rotational speed and weld speed on peak temperature of Al-Steel FSWed joint is shown in Table 2. The maximum measured temperature for the aluminium alloy and steel are 345 °C and 197 °C, respectively at constant tool rotational speed and varying weld speed. A similar observation was reported by Chen and Kovacevic [21] in Al-steel joining. Also, increasing weld speed reduces the peak temperature on steel side, but on aluminium side first decrease and then increased. This may be attributed due to availability of time for heat conduction to the aluminium is reduced. It is estimated that the heat input into the steel is ~2 times that of the aluminium alloy at a tool rotational speed of 765 rpm and a weld speed of 20 mm/min by considering thermal properties of the materials. Similarly, results were obtained at constant weld speed and varying tool rotational speed. This may be attributed due to the mechanical mixing and deformation action of the tool pin and an increase in the frictional heat generated under the shoulder. Figure 6 shows the thermal history at TRS 765 rpm and WS 20 mm/min. It can be seen that time to attain maximum temperature above 200 °C is ~30 s whereas for cooling it is ~90 s. The temperature greater than 200 °C was considered due to Al typically recrystallizes between 200 and 300 °C range. The peak temperature and cooling rate, are the most essential parameters at any specific location in the joint during welding, which not only affect the microstructure but also the mechanical properties of welded joint [22].

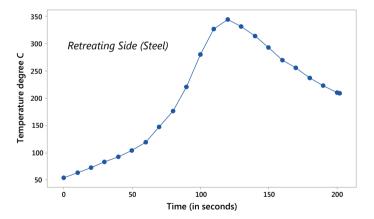


Fig. 6 Temperature history at TRS 765 rpm and WS 20 mm/min

4 Conclusion

In this work, FSW of dissimilar Aluminium (AA6061-T651) alloy and Stainless Steel (SS 304) material was successfully welded. The tool rotational speed and weld speed have a significant effect on tensile strength of the FSWed joint. From the obtained results, it is observed that at TRS of 765 rpm and 20 mm/min, highest tensile strength 41 MPa was obtained. Increasing the weld speed at constant tool rotational speed the tensile strength decreases. Whereas, at constant weld speed and varying tool rotational speed, the tensile strength increases from low to high tool rotational speeds then decreases. Tool rotational speed and weld speed are major FSW process parameters that decides the heat input and thereby the structure and properties of the joints. Microstructural characterization and their correlation with the mechanical properties of FSW of these joints will be carried out as future work.

Acknowledgements The authors would like to thank the authorities of Pandit Deendayal Petroleum University, Gandhinagar for providing the facilities to carry out this work.

References

- Kusuda Y (2013) Honda develops robotized FSW technology to weld steel and aluminum and applied it to a mass-production vehicle. Ind Rob 40:208–212. https://doi.org/10.1108/014399 11311309889
- 2. Agudo L, Eyidi D, Schmaranzer CH et al (2007) Intermetallic FexAly-phases in a steel/Al-alloy fusion weld. J Mater Sci 42:4205–4214
- 3. Atabaki MM, Nikodinovski M, Chenier P, Kovacevic R (2013) Welding of aluminum alloys to steels: an overview
- Rathod MJ, Kutsuna M (2004) Joining of aluminum alloy 5052 and low-carbon steel by laser roll welding. Weld J 83:16–26
- Shubhavardhan RN, Surendran S (2012) Friction welding to join stainless steel and aluminum materials. Int J Metall Mater Sci Eng 2:53–73
- Ramachandran KK, Murugan N (2019) Influence of axial force on tensile strength and microstructural characteristics of friction stir buttwelded aluminum alloy/steel joints. Strength Mater 51:300–316. https://doi.org/10.1007/s11223-019-00076-7
- Dehghani M, Mousavi SAAA, Amadeh A (2013) Effects of welding parameters and tool geometry on properties of 3003-H18 aluminum alloy to mild steel friction stir weld. Trans Nonferrous Met Soc China (English Ed 23). https://doi.org/10.1016/S1003-6326(13)62683-7
- Tang J, Shen Y (2017) Effects of preheating treatment on temperature distribution and material flow of aluminum alloy and steel friction stir welds. J Manuf Process 29. https://doi.org/10. 1016/j.jmapro.2017.07.005
- 9. Zheng Q, Feng X, Shen Y et al (2016) Dissimilar friction stir welding of 6061 Al to 316 stainless steel using Zn as a filler metal. J Alloys Compd 686:693–701. https://doi.org/10.1016/j.jallcom.2016.06.092
- Sameer MD, Birru AK (2019) Investigations on microstructural evolutions and mechanical properties of dual-phase 600 steel and AA6082-T6 aluminum alloy dissimilar joints fabricated by friction stir welding. Trans Indian Inst Met 72:353–367. https://doi.org/10.1007/s12666-018-1487-5

- Mathieu A, Shabadi R, Deschamps A et al (2007) Dissimilar material joining using laser (aluminum to steel using zinc-based filler wire). Opt Laser Technol 39:652–661. https://doi. org/10.1016/j.optlastec.2005.08.014
- Torkamany MJ, Tahamtan S, Sabbaghzadeh J (2010) Dissimilar welding of carbon steel to 5754 aluminum alloy by Nd: YAG pulsed laser. Mater Des 31:458–465. https://doi.org/10.1016/j.mat des.2009.05.046
- Bang H, Bang H, Jeon G et al (2012) Gas tungsten arc welding assisted hybrid friction stir welding of dissimilar materials Al6061-T6 aluminum alloy and STS304 stainless steel. Mater Des 37:48–55. https://doi.org/10.1016/j.matdes.2011.12.018
- 14. Harwani DM, Badheka VJ (2019) Effect of shoulder diameter on friction stir welding of Al 6061 to SS 304. In: Deb D, Balas VE, Dey R (eds) Innovations in infrastructure proceedings of ICIIF 2018, advances in intelligent systems and computing. Springer, Singapore, pp 355–366
- Ghosh M, Gupta RK, Husain MM (2014) Friction stir welding of stainless steel to Al alloy: effect of thermal condition on weld nugget microstructure. Metall Mater Trans a 45A:854–863. https://doi.org/10.1007/s11661-013-2036-9
- Bang H, Bijoy MS (2011) Temperature behavior in dissimilar butt joint during TIG assisted friction stir welding. J Korean Weld Join Soc 29:63–71. https://doi.org/10.5781/KWJS.2011. 29.5.561
- Ogawa D, Kakiuchi T, Hashiba K, Uematsu Y (2019) Residual stress measurement of Al/steel dissimilar friction stir weld. Sci Technol Weld Join 24:685–694. https://doi.org/10.1080/136 21718.2019.1588521
- Nadammal N, Kailas SV, Suwas S (2015) A bottom-up approach for optimization of friction stir processing parameters: a study on aluminium 2024-T3 alloy. Mater Des 65:127–138. https:// doi.org/10.1016/j.matdes.2014.09.005
- Mahto RP, Kumar R, Pal SK, Panda SK (2018) A comprehensive study on force, temperature, mechanical properties and micro-structural characterizations in friction stir lap welding of dissimilar materials (AA6061-T6 & AISI304). J Manuf Process 31:624–639. https://doi.org/ 10.1016/j.jmapro.2017.12.017
- Ranjan R, Khan AR, Parikh C, et al (2016) Classification and identification of surface defects in friction stir welding: an image processing approach. J Manuf Process 22. https://doi.org/10. 1016/j.jmapro.2016.03.009
- Chen CM, Kovacevic RÃ (2004) Joining of Al 6061 alloy to AISI 1018 steel by combined effects of fusion and solid state welding. 44:1205–1214. https://doi.org/10.1016/j.ijmachtools. 2004.03.011
- Ramanjaneyulu K, Madhusudhan Reddy G, Venugopal Rao A, Markandeya R (2013) Structureproperty correlation of AA2014 friction stir welds: role of tool pin profile. J Mater Eng Perform 22:2224–2240. https://doi.org/10.1007/s11665-013-0512-4