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Intelligent Automation (IA) in automobiles combines robotic process automation and artificial intelligence, allowing digital
transformation in autonomous vehicles. IA can completely replace humans with automation with better safety and intelligent
movement of vehicles. This work surveys those recent methodologies and their comparative analysis, which use artificial in-
telligence, machine learning, and IoT in autonomous vehicles. With the shift from manual to automation, there is a need to
understand risk mitigation technologies. Thus, this work surveys the safety standards and challenges associated with autonomous
vehicles in context of object detection, cybersecurity, and V2X privacy. Additionally, the conceptual autonomous technology risks
and benefits are listed to study the consideration of artificial intelligence as an essential factor in handling futuristic vehicles.
Researchers and organizations are innovating efficient tools and frameworks for autonomous vehicles. In this survey, in-depth
analysis of design techniques of intelligent tools and frameworks for AI and IoT-based autonomous vehicles was conducted.
Furthermore, autonomous electric vehicle functionality is also covered with its applications. The real-life applications of au-
tonomous truck, bus, car, shuttle, helicopter, rover, and underground vehicles in various countries and organizations are
elaborated. Furthermore, the applications of autonomous vehicles in the supply chain management and manufacturing industry
are included in this survey. The advancements in autonomous vehicles technology using machine learning, deep learning,
reinforcement learning, statistical techniques, and IoT are presented with comparative analysis. The important future directions
are offered in order to indicate areas of potential study that may be carried out in order to enhance autonomous cars in the future.

1. Introduction environments and locations and recognize the suitable

routes amid obstacles and signage [1, 2]. AVs are supposed
Autonomous vehicles (AVs) and associated technologies to minimize vehicle accidents, enhance the flow of traffic and
have rapidly gained the attention of the research community. =~ movability, reduce the utilization of fuel, be free from
AV utilizes sensorial technologies such as computer vision,  driving, and facilitate business operation and transportation
odometry, GPS, laser lights, sensors, and a mapping system  [3-6]. Despite the massive potential advantages, there are
to navigate. These technologies can be used to determine = many unsolved safety, security, legal and regulatory, social,
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ethical, and technology issues [7-10]. In the AV system, it is
expected to solve all the problems to avoid failure. In this
survey, design, hardware, Al-based, and safety issues and
current solutions of autonomous vehicles are discussed.
Furthermore, scope of improvement in these solutions is
provided as directions for AV research community.

Intelligent software and tools are required for efficient
design and development of AVs. These tools are used during
path planning, object detection, perception, act, operational
testing, and risk assessment phases. In this survey, com-
prehensive analysis of tools is provided. Various tools and
frameworks such as SysWeaver, SysAnalyzer, AutoSim,
Flow, OpenCV, JESS, Fuzzy], AuRa, and PaddleCV are
analyzed based on functionality and applications. The latest
releases and versions such as AutoSim 200, OpenCV 4.5.5,
and Fuzzy] 1.2.2 are discussed so that researchers can
contribute in various open-source tools and frameworks.

Since the middle of the 1980s, several car companies, re-
search institutes, universities, and industries worldwide have
studied and developed AV. To promote AV technology, there
are well-known competitions. For example, 2007 Urban
Challenge and 2005 DARPA Grand Challenge are organized by
Defense Advanced Research Projects Agency (DARPA). In the
USA, the first competition of DARPA Grand Challenge was
organized in which AV was required to navigate 142 miles long
desert track within 10 hours. In the first few miles, all the AV
failed to navigate. The second competition DARPA Grand
Challenge was organized in 2005 in which AV was required to
navigate 132 miles long track that contains mountain passes,
approximately 100 right and left turns, three narrow tunnels,
and flat and dry lake beds [11]. In this competition, 4 AVs
among 23 finalists completed the track in time. Stanley of
Stanford University secured first place the AV, and second and
third place was secured by AV of Carnegie Mellon University
Sandstorm and Highlander, respectively. The third competition
DARPA Urban Challenge was organized in 2007 in California,
USA. AV was required to navigate 60 miles’ long track con-
taining human-driven cars and virtual urban atmosphere, and
6-hour time limits [12]. In this competition, 6 AVs among 11
finalists completed the track in time. In this competition, first
place was secured by Boss AV of Carnegie Mellon University,
Junior AV of Stanford University claimed second place, and
Odin AV of Virginia Tech finished in third place. However,
these competitions did not include tough challenges as pre-
sented in everyday traffic life. After the DARPA competition,
there are several trials and competitions performed by different
organizations. Some examples of these competitions are as
follows: ELROB from 2006 to till now [13], (SparkFun), the AV
Competition from 2009 to 2017, and Intelligent Vehicle Future
Challenge from 2009 to 2013 [14]. In recent time, both industry
and academic community accelerate the research work in the
field of AV. Some notable companies which are performing
cutting-edge research in AV are Google, Argo Al, Nvidia,
Mercedes Benz, Ford, Volvo, Lyft, and Aptiv. Some universities
such as Virginia Tech, MIT, Carnegie Mellon University,
Stanford University, and University of Ulm have also con-
ducted research in AV.

According to SAE ]3016 standard, there are six levels in
vehicle automation from 0 to 5 [15, 16]. Each level has its
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own functionalities such as (i) Level 0: the individual op-
erator is in-charge of all operating activities (No Automa-
tion), (ii) Level 1: the vehicle is controlled by a human driver,
but the automation system assists in operating (Assistance to
Drivers such as Tesla AutoPilot) [17], (iii) Level 2: the vehicle
used automated features but the control and environment of
the driving process require human intervention (Partially
Automated Driving such as Tesla AutoPilot) [17], (iv) Level
3: the human driver should be ready to take control of the
vehicle at any moment (Automated Conditional Driving),
(v) Level 4: under some conditions, the automation system
can drive the car automatically, but the human operator will
still be able to control it (high-level automation of driving
such as Waymo driverless cars [18]), and (vi) Level 5: under
all the conditions, the automation system can drive the car
automatically, but the human operator will be able to control
it (fully automation Waymo driverless cars [18]). The driving
choices of the vehicle consist of three different levels: tactical
level (comprising lane-keeping and lane-changing), opera-
tional level (consisting of break and pedal control), and
strategic level (containing routing) [19]. The tactical and
operating controls are further divided into lateral and
longitudinal control categories [19]. Several researchers and
orgranizations are trying to achieve Level 5 automation.
These challenges are covered in this work comprehensively.

Al is a critical technology for efficient autonomous
vehicles functionality. AV utilizes AI and sensory technol-
ogies and minimizes the risk. In the field of object detection,
computer vision, and semantic segmentation, deep learning
has been very effective. On several common object detection
datasets, deep learning techniques have raised the standard
[20, 21] and have been commonly used in AV especially
detection of people [22, 23], vehicle [24, 25], road signal
[26, 27], and traffic lights [28, 29]. AI techniques play an
important role (perception, decision-making, localization,
and mapping) in a given area to improve the performance of
AV [30]. Perception is described as an AV’s repeatedly
scanning and monitoring the environment with sensors, like
human vision [31]. Several deep learning approaches have
been utilized for perception and are considered one of AV’s
challenging areas [32]. Al also plays an important role in AV
decision-making, such as automatic parking [33] and path
planning [34]. The computational problem of creating or
updating a map of an uncertain area is known as simulta-
neous localization and mapping (SLAM) [35].

The significant contributions of this work are as follows:

(i) A comprehensive survey of Al and IoT-based au-
tonomous vehicles research works is carried out.

(ii) Safety standards and challenges for autonomous
vehicles are discussed with currently available
solutions.

(iii) Research and development challenges for AI and
IoT-enabled autonomous vehicles are presented.

(iv) Tools and frameworks for autonomous vehicles used
by researchers and organizations are highlighted.

(v) Recent advancements in autonomous vehicles using
cloud computing, machine learning, and deep
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learning are discussed as future directions for re-
searchers and organizations.

This work is organized as follows: the research meth-
odology, data collection, and analysis methods are discussed
in Section 2. Section 3 presents the theoretical background
and recent artificial intelligence trends for autonomous
vehicles. Section 4 presents the recent studies and devel-
opments over autonomous driving decision systems. Section
5 offers the current observations in safety standards and
ethical challenges in autonomous vehicles. Section 6 presents
the importance of artificial intelligence in IoT-enabled au-
tonomous vehicles in recent studies. Section 7 shows the
research challenges in integrating artificial intelligence-en-
abled autonomous vehicles. The intelligent system software
and tools used for autonomous vehicles are elaborated in
Section 8. Section 9 presents the artificial intelligence-en-
abled testing techniques for autonomous vehicles. Section 10
presents the importance of artificial intelligence in auton-
omous electric vehicles and associated applications. Section
11 shows the role of artificial intelligence in power train
energy management and electric vehicles. Section 12 pres-
ents the autonomous driving subsystems in electric vehicles.
Section 13 presents the advanced technologies and their
roles in autonomous vehicles. Here, importance is drawn
towards integrating artificial intelligence and other advanced
technologies with autonomous vehicles. Finally, Section 14
concludes the paper with future directions.

2. Survey Materials and Methods

This section explains the survey method and data collection
and analysis followed during the survey. Details are pre-
sented as follows.

2.1. Survey Research Method. The following survey meth-
odology is followed in this work to survey artificial intelli-
gence and its importance to autonomous vehicles.

This work has focused on those contributions that in-
tegrate artificial intelligence with autonomous vehicles.
Furthermore, those systems and proposed approaches that
apply artificial intelligence or its variant to improve the
autonomous vehicle’s experiences are taken up for study, in-
depth, and feature-based analysis.

This work has studied and presented the analysis of how
artificial intelligence is helpful in smartly operating the
different types of autonomous vehicles, integrating IoT with
autonomous vehicles, and handling the operation, coordi-
nation, communication, decisional systems, and data han-
dling processes.

Furthermore, the use of advanced technologies and
artificial intelligence in autonomous vehicles is explored in
this work.

2.2. Survey Data Collection and Analysis. This section dis-
cusses the process of article collection, analysis, filtering, and
survey preparation. Figure 1 shows the complete process in

detail. The essential phases of this process are briefly
explained as follows:

Step 1: in the first step, articles are collected using
Google Scholar and reputed publisher’s search engines.
This mainly includes Elsevier, IEEE, Springer, ACM,
Wiley, Taylor and Francis, IET, Hindawi SAGE, and
MDPI. To search an article, keyword-based search is
applied that mainly include “artificial intelligence for
autonomous vehicles,” “artificial intelligence for un-
manned vehicles,” “artificial intelligence and advanced
technologies for autonomous vehicles,” “surveys on
artificial intelligence and autonomous vehicle,” “IoT
and artificial intelligence for autonomous vehicles,”
“artificial intelligence in autonomous driving,” “au-
tonomous vehicles,” “autonomous underwater vehi-
cles,” “machine learning and autonomous vehicles,”
“autonomous vehicles applications,” and “autonomous
electric vehicles.”

Step 2: after selecting the articles, the key findings,
advantages, disadvantages, and significant challenges
that still need to be addressed are observed. The key
findings include (i) autonomous vehicles and their
classification, (ii) artificial intelligence role in auton-
omous vehicles or autonomous electric vehicles, (iii)
role of artificial intelligence in autonomous driving or
decision systems, (iv) ways to integrate artificial in-
telligence with autonomous systems, (v) intelligent
tools and frameworks, (vi) training and testing au-
tonomous levels and systems using artificial intelli-
gence, (vii) artificial intelligence in on-road object
detection and vehicle control system, and (viii) artificial
intelligence and green energy solution for autonomous
systems.

Step 3: after studying the key findings, the articles were
classified into four categories, implementation, survey,
discussion, and tutorial. An implementation-based
article contains the integration of artificial intelligence
in simulating or implementing autonomous experi-
ences. The survey articles’ category includes the sig-
nificant studies of artificial intelligence in autonomous
systems. Discussion and tutorial articles provide a
detailed explanation and classifications of autonomous
vehicles and the importance of artificial intelligence
and autonomous vehicles.

3. Theoretical Background

This section introduces the recent studies on artificial in-
telligence and its application in autonomous vehicles. Details
of similar approaches are briefly discussed in subsequent
sections. Furthermore, this section discusses the compara-
tive analysis of studies, surveys, and developments to observe
the advantages, disadvantages, and future directions.

3.1. Recent Artificial Intelligence Trends for Autonomous
Vehicles and Driving Systems. This section explores current
advancements, surveys, and practices in artificial intelligence
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| Article searched through Google scholar and publisher’s search engines = 542 |

l

| Articles after removing duplicates = 355

I

| Article filtered after abstract screening= 321

Exclusion Criteria

Not related to artificial intelligence or autonomous system research = 10
Not related to artificial intelligence or its classifications = 09
Not related to autonomous driving, systems or vehicles = 11

Relevant Articles = 291

autonomous vehicles = 11

Exclusion Criteria-based on design, implementation or relevant proposal
No relevant design for autonomous vehicles or systems = 22
No advanced technology infrastructure construction for autonomous vehicles = 09
No infrastructure proposal or autonomous experience improvement for

No in-depth or relevant analysis for autonomous systems = 20

Final Article Count = 229

FIGURE 1: Autonomous vehicles” safety and security.

technology for AVs. This highlights the importance of Al for
AVs. The details are as follows.

Khayyam et al. [36] discussed to integrate artificial in-
telligence with autonomous systems. Here, various types of
artificial intelligence, their importance, and details of au-
tonomous driving are explained. Furthermore, the devel-
opment of the industrial revolution with the integration of
artificial intelligence and IoT are discussed to address the
high-performance embedded system in the autonomous
industry. Additionally, the importance of cloud and edge
computing in independent infrastructure is concerned,
keeping the center’s technical challenges such as delay,
bandwidth, and security. Ma et al. [30] conducted an in-
depth analysis of artificial intelligence in autonomous ve-
hicles. In observations, it has been found that the current
practices of using artificial intelligence in autonomous ve-
hicles are limited to object detection and tracking. The object
includes the traffic signs, on-road vehicles, on-road move-
able or stationery items, and pedestrians. Here, the critical
challenges to artificial intelligence for autonomous appli-
cations such as (i) sensor integration and performance issues
to artificial intelligence and autonomous systems, (ii)
complexities and uncertainties to autonomous and associ-
ated complex systems and recent developments, (iii) fine-
tuning and optimization approaches, (iv) hardware con-
cerns, and (v) artificial intelligence-integrated opportunities
and future research directions are discussed. Cunneen et al.
[37] surveyed to elaborate the use of artificial intelligence in
various systems of autonomous vehicles. Here, the primary
focus is drawn towards using artificial intelligence-inte-
grated conceptual framing that supports governance and
regulation. So far, little attention is drawn towards the
conceptual frame. This work has discussed the role of
conceptual structure in anticipatory governance. This role
increases the accuracy and impact of safety concepts and
directions in autonomous systems. This work is more of

theoretical development and can be extended to discuss the
conceptual framing in various applications and use-cases.

Table 1 shows the comparative analysis of artificial in-
telligence-integrated autonomous systems surveys. This
comparative analysis is performed mainly over fake intel-
ligence-related domains relevant to autonomous systems or
vehicles. These surveys discuss various challenges, solutions,
and application scenarios. For example, attack and defense
analysis is examined to identify the significant cyberattack
scenarios to autonomous vehicles and systems.

3.2. Literature-Based Research Challenges to Autonomous
Vehicles and Related Studies. This section explores the recent
research challenges to autonomous vehicles. Details are
presented as follows [21-25, 37-41].

Autonomous vehicles offer better driving decisional
spectrum that avoids intoxication, distraction, fatigue, and
nability to make timely decisions. All of these factors are
associated with the ability of the technologies to outperform
the human driving decisions abilities [37]. Thus, advance-
ments in technology to avoid errors and give real-time
responses are significant challenges for Al-integrated au-
tonomous vehicles. Various research works have discussed
the importance of the safety and performance metrics of
autonomous vehicles. These metrics should include sensor
error, programming bugs, unanticipated events and entities,
cyberattack and threat probabilities, and hardware failures.
Development of these metrics and analyzing these metrics in
a real-time environment are essential to address in the fu-
ture. Table 2 highlights the comparative analysis of auton-
omous driving systems.

There are various categories of cyberattacks, including
attacks over control systems, driving system components,
vehicle-to-everything network communications, and risk
assessment and survey systems. The primary attack
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TaBLE 1: Comparative analysis of artificial intelligence-integrated autonomous vehicle system surveys.

Author Year ABCDETFGHTI ] Key findings Challenges and future directions
In this research work, various artificial ~This survey is a short discussion over
intelligence and autonomous vehicle artificial intelligence field and
experiences are discussed. The autonomous vehicles. This work can be
autonomous vehicles and their extended to address the use of advanced
Khayyam ' deve19pments are associated with technologies (st{ch as blockchain,
et al. [36] 2020 v x vV V VX X X/ 1ndust}‘1a1 revglutlon, cloud and edge sefverles§ computing, arnd unmanned
computing environments, IoT networks, aerial vehicle control) with autonomous
and sensors. Furthermore, the research vehicles. Furthermore, the
directions in integrating artificial computational complexities, security,
intelligence with autonomous vehicles  and advanced technology integration
are explored. can be studied in detail.
This is an in-depth survey covering the
importance of artificial intelligence-  This work can be extended to propose
integration with autonomous vehicles. solutions or conducted in-depth studies
Here, attentions are drawn to discuss the over challenges such as complexities
Ma et al. properties of autonomous Vehicle.s, and uncerFaipties. The complexitie§ and
[30] 2020 x v v v x vV v V x  challenges, and comparative analysis of  uncertainties can be resolved with
existing systems in this direction. advanced systems such as artificial
Furthermore, the solution or intelligence-integrated decisional
architectures are proposed or discussed support system. Likewise, other issues
to address the existing challenges in can be addressed.
similar systems.
This is a theoretical development and
This is a detailed survey addressing the discussion over role of artificial
artificial intelligence and autonomous  intelligence for autonomous vehicles.
vehicle concerns. The role of artificial ~ This work can be extended to include
Cunneen inte.ll.igenc§ ir} décisional making and  the c.iiscuf,sions over cqmplexities ar}d
et al. [37] 2019 x v v vV X v v X x x decisions limitations for autonomous amplifications of emerging technologies
vehicles is discussed. Furthermore, the in autonomous systems. Furthermore,
shortcomings and safety discussions in risks associated with conceptual
artificial intelligence-intergrated frameworks for deployment of
autonomous vehicles are discussed. autonomous vehicles are another
important aspect to explore in detail.
This is theoretical development and
discussion over role of aritificial
intelligence in information uncertainty
This work has discussed the uncertainty and manipulability. The importance is
handling, unpredictability control and drawn towards how the quality of
- decision-making power of artificial decision processing artificial
Osorio and . . . . . L : .
Pinto [38] 2019 x v vV v x x v x x x intelligence for autonomous vehicles. intelligence in improving the efficiency

Here, risks associated with successful
manipulation of high levels of
uncertainty are discussed.

and welfare is important. However, this
work can be extended to discuss the
system complexities and manipulation
proof of artificial intelligence for
pretecting the lives and welfare of
society.

This work has surveyed the issues of

traffic in various countries and discussed

the role of connected and autonomous
vehicles to tackle these issues. The key

Lietal [39] 2018 x v v v v x Vv V V x benefits and need of artificial intelligence

are discussed. In artificial intelligence,

special focus is drawn towards the role of

deep and reinforcement learning for
autonomous vehicles.

This work can be extended to include
more use cases that integrate advanced
technologies such as blockchain, IoT,
edge, fog, cloud, and serverless
computing. Furthermore, more
algorithmic approaches in artificial
intelligence can be explored.
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TasLE 1: Continued.
Author Year ABCDEFGHTIJ Key findings Challenges and future directions
This work has surveyed artificial
intelligence-enabled long-term This work has discussed the different
autonomy systems and features. The  domains and brief about related work in
Kunze et al major areas where artificial intelligence these domains. The work can be
[40] T2018 VvV XV VX /X X X plays an important role include extended to have in-depth discussions,
navigation and mapping, knowledge identifying challenges in existing
representation and reasoning, proposals, and develop discussions over
perception, planning, learning, and possible solutions to challenges.
interaction.
This work has Ny dentified the atFack and Cyberattacks and defense strategies are
defense strategies from 151 articles and . .
) explored which have grave impact over
conducted a comprehensive survey. The . .
. . . human life and safety. This work can be
comprehensive survey investigates the . o
. . . . extended to discuss the complexities of
Kim et al. autonomous vehicles in three major
2021 X v V' /X X X X V / o . proposed systems and related
[41] categories including autonomous control

system, autonomous driver system and

cyberattacks and defense strategies.
Furthermore, attack and defense

associated components, vehicle-to-
everything network and
communications.

scenarios can be explored for in-depth
analysis.

A: short survey, B: long and in-depth survey, C: autonomous driving or assistance, D: artificial intelligence, E: machine, deep, or reinforcement learning, F:
artificial intelligence and IoT network for autonomous systems/driving/vehicles, G: artificial intelligence applications for autonomous, H: artificial intelligence
and sensors for autonomous vehicles, I: artificial intelligence-based data analysis in autonomous systems, and J: other advanced technologies (such as cloud/

edge/fog computing, blockchain, and serverless).

categories that need to be explored and researched include
sensor attacks, mobile application-based vehicle information
system attacks, IoT infrastructure-based attacks, physical
attacks, and side-channel attacks. Furthermore, artificial
intelligence is used in cybersecurity in attack identification.
Autonomy architecture is another interesting aspect. In
architecture, autonomous systems integrating sensors and
actuators, control functions, vehicular monitoring envi-
ronment, external control factors, speed, visibility, and
object detection are critical subsystems to observe and
explore.

With the increase in autonomous vehicles, the com-
munication overheads will also increase. This causes delay or
loss of packets which indirectly decreases the performance
or increases the error in communication. Autonomous
vehicles and their implementation are critical to human life.

The limitations of existing works are that extensive
analysis of recent developments such as use of deep learning
and IoT are not covered. Furthermore, discussion on in-
telligent tools and software are essential that is not included
in existing works. Furthermore, developments of efficient
simulation are required. Object detection, path planning,
sensors, and use of cloud computing should be improved to
develop autonomous vehicles.

4. Autonomous Driving Decision Systems

In the past, substantial progress in the development of
control theory and the implementation of its findings are
observed for an extended period. Increasingly, products
come with built-in computers that make decisions. Recent
years have seen a significant increase in the use of walking
robots. Robots that look like humans are perceived as
friendlier and more accepted in society. This strategy can

also be employed in self-driving automobiles. The idea of
giving the illusion of human traits to robots is gaining
traction. The types of robots that can be developed based on
the drive type include [45] (i) wheeled robots, which are
employed primarily for light work (for example, following a
particular line or path), (ii) manned or unmanned tracked or
crawling robots, which can maneuver in either man-made or
natural settings, (iii) programmable robots that are capable
of performing a specified sophisticated task in a natural and
industrial setting, and (iv) combination of robots for dif-
ferent tasks. Autonomous driving is both a bold idea and a
very feasible technological accomplishment. Many technical
companies (including Audi, Ford, Tesla, Renault, Waymo,
and ride-sharing firms Lyft and Uber) are battling to
overcome technological hurdles and allow an altogether new
style of driving that will surprise and thrill consumers. This
section explores the importance of various technologies that
are associated with autonomous driving systems. Details are
presented as follows.

4.1. Advanced Technologies and Autonomous Driving
Systems. Autonomous vehicles are becoming more intelli-
gent thanks to recent advances in artificial intelligence and
deep learning. Current AI techniques are used in most
contemporary self-driving car components [43]. Driverless
vehicles are complex systems for moving people or cargo.
Like introducing Al-powered autonomous automobiles on
public highways, introducing AI-powered autonomous ve-
hicles on public roadways presents many challenges. Using
the current framework and explainability of neural net-
works, it is tough to demonstrate the functional safety of
these vehicles. To make use of deep learning methods, you
will need enormous training datasets and plenty of
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TaBLE 2: Comparative analysis of autonomous driving systems or experiences.

Key findings

Challenges and future directions

This work has discussed the importance
of deep learning in autonomous
driving. Here, a set of challenges in
autonomous driving systems are
discussed that can be overcome with
deep learning and artificial intelligence
approaches.

This work can be extended to discuss the
role of deep learning while integrating it
with other autonomous driving assisting
infrastructure. This includes advanced
infrastructure aspects including IoT,
cloud, and blockchain technologies.

Author Year A B CDEFGHTI J
Grigorescu )00 x v v v X / / / x X
et al. [42]

I[ig’]getal‘ 2021 X v v X XV v X XV

This work has researched and
categorised the present state of
automated driving, and devised a
taxonomy for self-driving vehicles.
Furthermore, this work has proposed
an hybrid human and artificial
intelligence architectural concept.
Autonomous driving was also
summarized by the design of the vehicle
itself. As with self-driving car
technology, this work developed a
taxonomy of autonomous driving
technologies. We valued human
information integrity and machine-
human interaction above simple driver
replacement.

This work can be extended to include
safety standards and discussions. The
proposed hybrid architecture includes
the safety monitoring system which can
be extended with other advanced
technologies including drones and cloud
computing environments. Furthermore,
data security and privacy can be handled
with blockchain technology as well.
Further performance issues can be
explored with advanced network such as
5G networks.

Kumar et al. 2021 X X vV X X VvV / X / X

This work mainly discusses the use of
drones in autonomous systems.
Furthermore, the anticollision
strategies for drone movement and
traffic monitoring are discussed. Results
are analyszed by varying the drones and
on-road vehicles.

This work is relevant to real-time
deployment and observations of
autonomous systems. However,
connection between drones and
autonomous vehicles need to be

explored in detail.

This research looked at system settings,
components, operations, and real
scenarios for autonomous vehicles,
smart UAVs, and drones. The main
research issues and security concerns
for Al-based attacks are addressed.

This work is a short survey discussing
the important technological aspects and
their role in autonomous vehicles,
driving and systems. This work can be
extended to have in-depth discussions
over technological aspects.

[44]

Kim et al.

[45] 2020 v X V X X V V X V
[Vzgfgetal‘ 2020 X Vv VX X X X X v

This blockchain-based architecture
supporting safety and security to
autonomous vehicles and its networks.

Work can be extended to include smart-
contract for different systems and
subsystems for better credibility.

A: short survey, B: long and in-depth survey, C: artificial intelligence-based proposal/discussion, D: deep learning, reinforcement learning, F: Al-enabled
motion control systems for autonomous vehicles, G: safety systems for Al-integrated autonomous driving, H: computational, hardware, and deployment
challenges supporting AI technology, I: advanced technological solutions (drone, blockchain, and IoT), and J: Al-integrated safety or cyberattack protection

systems/proposal or discussion.

processing capacity. This article presents an overview of deep
learning for autonomous vehicle use. When designing Al-
based self-driving vehicles, understanding the requirements
and capabilities of the system serves as a blueprint. Gri-
gorescu et al. [42] thoroughly discuss the deep learning
models utilized in autonomous vehicle driving. Recurrent
and convolutional neural networks and deep reinforcement
learning are included in AI-based self-driving architectures
and it is further elaborated in Section 13.9. The sampled
driving approach starts with these tactics, which serve as the
foundation for how individuals perceive, plan, and behave in
the situation. Modular perception-planning-action pipeline
end-to-end systems are used for deep learning techniques.
The research described here unveils deep learning and Al

techniques for autonomous driving. Ning et al. [43] provide
a taxonomy of current independent driving designs. After
that, a proposal is made to integrate hybrid human-artificial
intelligence into a semiautonomous driving system. This
work has proposed a theoretical architecture based on hy-
brid human-artificial intelligence for improved usage. With
this architecture, it is easy to categorize and overview po-
tential technologies while illustrating benefits. In the pro-
posal, research challenges associated with autonomous
driving are also discussed.

Artificial intelligence and drone-based system to mon-
itor on-road driving: Kumar et al. [44] discussed the im-
portance of drones and Internet of Vehicles (IoV) for traffic
monitoring. It has been observed that traffic cameras are



among the drawbacks of incomplete data collection, re-
stricted medical assistance, and inability to follow vehicles
after an accident. Artificial intelligence-integrated object
detection and the drone-based system collects and transmits
data about commuters, traffic patterns, and vehicle activity
to various agencies for traffic planning. The authors have
proposed software-defined networking (SDN) controlled
drone networks to reduce control overhead and effectively
handle on-road vehicle observation scenarios. Kim et al. [45]
have investigated system settings, components, operations,
and actual circumstances for significant application types,
including autonomous vehicles, intelligent UAVs, and
drones. This study has also provided instances and scenarios
where autonomous vehicles can be used in public and
private places with different viewpoints and circumstances.
The primary research problems and security concerns about
future Al-based attacks have been thoroughly discussed.

Artificial intelligence, machine learning, and cloud
computing and autonomous driving: Yaqoob et al. [47]
present a cross-domain solution for the Cognitive Internet of
Vehicles (C-IoV) based on global Al fog computing and IoT
Al service architecture. Furthermore, it explores the C-IoV
for autonomous driving from the viewpoints of what, where,
and how to compute. This work has used the Internet of
Vehicles real-time task deployment to illustrate how the
proposed approach works better than the existing alterna-
tives. This work has presented a multilayered architecture for
infrastructure assistance to autonomous vehicles and sys-
tems. Machine learning, cloud computing, fog computing,
and IoT layer processing are proposed for autonomous
vehicles.

Data security and autonomous driving systems: Ren
et al. [48] reiterated that AV's will simplify driving, reducing
driver fatigue and traffic accidents. The major credit goes to
advances in artificial intelligence and Internet of Things;
autonomous driving has come long. Despite its numerous
benefits, it also brings new challenges, chief among them
security. The authors analyze the security concerns of au-
tonomous driving from many angles, focusing on how they
are experienced, navigated, and managed. We describe the
dangers and the associated defensive measures. Define
emerging security risks, including deep learning-based self-
driving cars. Ren et al. identified three kinds of possible
assaults against current AVs and provided defensive strat-
egies for each. Ren et al. investigated AVs future, self-
driving cars based on deep learning algorithms, and the new
security risks. Ren et al. examined deep learning model
security risks such as system faults, adversarial examples,
model privacy, and hardware security. Singandhupe and La
[49] present that robotics, augmented and virtual reality, and
self-driving cars are interested in SLAM. SLAM collects
information about the environment and then estimates the
robot’s location. While SLAM has been existed for over 30
years, it is responsible for the decade’s self-driving cars.
Singandhupe and La, in a concise manner, describe how
SLAM techniques have contributed to the automotive in-
dustry. Singandhupe and La first sought to examine the
various localization techniques available and to evaluate the
state-of-the-art methodology. Finally, Singandhupe and La
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addressed the concerns about autonomous vehicle security
and how this matters. Singandhupe and La discussed several
SLAM techniques for autonomous driving using the KITTI
dataset. Singandhupe and La tried to categorize SLAM
techniques utilizing Lidar-based or Stereo-based odometry.
Singandhupe and La aim to highlight the security flaws in
autonomous driving systems. Many academics have created
and studied attacks, making it a highly intriguing topic for
future research. Singandhupe and La have developed an
approach that uses graph-based SLAM algorithms and fo-
cuses on the KITTT dataset to close the current research loop
better. Singandhupe and La also wish to focus on integrating
and validating state-of-the-art deep learning methods to
SLAM since they may be helpful for data analysis. Kun et al.
[50] discussed that automation, in and of itself, requires
connected vehicles, but this comes with its own set of
problems. When car-to-car communication is implemented,
the system may keep people from running into each other
and enable unauthorized access to personal data. There is a
possibility that the collector will reuse every activity in the
vehicle. The function of vehicle user interfaces in this legal
framework varies widely between countries. As our tech-
nological solutions and legal frameworks influence con-
sumer acceptance and user experience, these solutions and
frameworks will have a significant impact. Interoperability
issues, however, are not often discussed by the company or
in the literature. To meet rising customer expectations, there
is a need to build better user experiences on safer hardware
and software infrastructures. In recent times, it has been
observed that both in-car applications and sophisticated user
interfaces have improved. Transportation is transforming.
They are connected to the outside world and depend on
computer power to conduct autonomous driving. Decades
of precise, explicit management are giving way to frequent,
intervention-based control. With these new developments,
the community now faces new challenges and looks forward
to new opportunities. We anticipate that vehicle designers
and researchers will increase safe and affordable trans-
portation that allows passengers to work and play while
traveling. Wang et al. [46] discussed that autonomous
driving could revolutionize transportation networks by
making roads safer, making people more comfortable, and
giving cars more intelligence. In autonomous driving,
AVSNs may disseminate data in essential applications such
as safety and entertainment. Autonomous driving, however,
changes based on time, place, and queue constraints. Thus it
is challenging to direct CAVs to disseminate significant
amounts of information inside autonomous vehicle net-
works. On the other hand, attackers could share inaccurate
information to mislead the network, putting CAVs at risk for
security and privacy issues. Sophisticated blockchain-based
autonomous systems provide secure content transmission
and also offer an economic incentive approach. The
blockchain-enabled autonomous system architecture will
serve to safeguard content distribution. Wang et al. evalu-
ated CAV and RSU trustworthiness using task-based and
credit-based reputation models. To inspire CAVs to give
credible information, the researcher examines the influence
of reputation and task rewards. While encouraging roadside
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units, to be honest, furthermore, authors have also designed
a novel proof of reputation consensus method for block-
chain-enabled autonomous vehicle networks. The archi-
tecture proposed does better in terms of dependability and
security than existing approaches.

Artificial intelligence, IoT, and Autonomous Driving
Systems: according to Khayyam et al. [36], many intelligent
methods and technologies are being used to improve de-
cision-making abilities with the advent of autonomous ve-
hicles. Connecting Al and IoT for AV enables more dynamic
and resilient control systems in environments. In addition to
cloud hosting, new edge computing paradigms such as la-
tency, network bandwidth, and security are difficulties for
AVs. As a basis for future Al-based AV development,
Khayyam et al. explore the architecture of an Al-based AV
using edge computing. Du et al. [51] stated that anonymity
in federation learning enables a community to gather, share,
and analyze large quantities of data from numerous sources
without revealing the original data. With computing ca-
pacity, multiple learning agents may be used to improve
learning efficiency while also preserving the privacy of data
owners. One of the reasons the federated learning business is
on the rise is because privacy is a big issue. Future IoT
systems will include numerous devices and privacy-sensitive
data needing rapid connectivity, processing, and storage. It is
possible that federated learning could serve as a solution to
these problems. Du et al. started with the latest scientific
study on federated learning and how it may be used for
wireless IoT. Then, it is discussed that how important
federated learning is in building a vehicle-based IoT and
other possible associated avenues.

5. Safety Standards and Challenges in
Autonomous Vehicles

Autonomous vehicles (AVs) is an active research area from
last two decades. The rapid growth of vehicles on the road
has increased the chance of traffic accidents that is con-
sidered a severe problem to the public and society. Human
error factors such as inappropriate judgments, interruption,
and exhaustion can be the reason for fatalities and accidents
[52]. Hence, AV can be a solution to enhance vehicle safety
and minimize traffic accidents and human driving errors.
AV utilizes advanced technologies such as Electronic
Controlled Units, path planning, Global Positioning System,
3D mapping, and light detection and ranging to reduce
human driving mistakes, enhance safety, and optimize traffic
flow [53]. Safety and security are the challenging tasks in AV
to where significant research contributions are required.
Figure 2 demonstrates the safety and security of AV.
Electrical and Electronics safety systems and mechanical
safety systems are considered safety issues in AV’s safety
system. In contrast, cyber and physical security systems are
identified as security issues in AV’s security system.
Security of AV concentrates on defending the vehicle
from deliberate attacks, and the safety of AV focuses on
guarding the vehicle against incidental collapse [54]. A
multisensor AV can pre-sense the attack conditions and
handle accordingly. Here, AV can avoid the attack or
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FIGURE 2: Autonomous vehicles’ safety and security.

accident by changing its directions as well. These features are
possible with integration of advanced technologies such as
AI/ML, IoT, and Big Data analysis. The international
standard ISO 26262 defined the operational security of
Electrical and Electronics systems in AV [55]. ISO 26262 set
of standards adapts to the International Electrotechnical
Commission 61508 series of measures to deal with sector-
specific electrical and electronic systems requirements in
road vehicles. The international standard SAE J3061 defines
the operational security in conventional vehicles [56]. SAE
J3061 describes a process architecture of a cyber-physical
vehicle system’s security lifecycle. Standard SAE J3061 in-
troduced a framework in which a communication bridge is
established between cybersecurity and safety phases to in-
tegrate vehicle security and safety. Howeve, how to combine
security and safety analysis is missing in this standard. In the
literature [57-59], the issues related to alignment for the
cyber-physical system have been addressed.

Six levels of driving automation are described in SAE
J3061 [15]. It delivers a classification with complete de-
scriptions of all six groups (0 to 5), from without automation
to fully functional automation, against the backdrop of
vehicles and their function on roads. Every level of driving
automation has additional safety and operational require-
ments. Moreover, various levels will face a more significant
number of possible challenges, hazards, and risks. To ensure
functional safety and evaluate failures, HARA is considered
as a standardized process and found in ISO 26262 [60]. In
addition to this work, the authors [61] introduced a HARA
technique by utilizing ASIL at level 4 for AV. ASILs are
recursively improved to obtain specific safety objectives for
vehicles. To assess the hazards or threats in AV, ASIL is
utilized and considered as a critical point. In [62], the au-
thors used a fault tree in HARA, similar to an attack tree,
where three nodes represent failure events. STRIDE is a
threat model that can identify and classify possible threats to
a system [63].

To conduct a systematic analysis of system architectures,
the authors combine two techniques, STRIDE [63] and
HARA [60], and proposed a new approach named SAHARA
[64]. The STRIDE technique performs the security analysis,
while the HARA approach of ISO 26262 conducts safety
analysis. The co-analysis of security and safety is also served
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by US2 [65], similar to SAHARA. For an attack, the security
level is quantified first after that analyzes the safety hazards
by US2. If an attack is introduced in safety hazards, then
countermeasure of safety and security is required. Other-
wise, countermeasure of protection is necessary.

The co-analysis of security and safety is also considered
in [66] and introduced a technique that employed the
standing methods, such as GORE. The results from security
and safety analysis are considered by this approach to make
the goal tree for addressing the necessities with correlated
vulnerabilities. A new system theory-based hazard analysis
approach is introduced in [67] to analyze the risk. It con-
siders safety to be a control issue instead of a failure issue.
This work is extended in [68] and introduced STPA-Sec. Asa
result, the authors outline a novel system thinking technique
for safety to protect the complicated system against
cyberattacks. In [69], the authors utilized STPA [67] and
STPA-Sec [68] approaches and introduced a new method-
ology named as STPA-SafeSec to assure system security and
safety by using highly effective mitigation approaches. Be-
fore selecting the appropriate mitigation approaches, the
STPA-SafeSec method unified all the security and safety
considerations and prioritized the system’s most crucial
component. Due to this analysis, the system can identify the
potential loss due to particular security or safety exposure.

Several researchers have employed deep learning to
enhance safety. In [42], the author explained application of
deep learning in autonomous driving and reasoning about
the safety such as (i) recognizing the consequences of po-
tential errors and (ii) recognizing the more extensive sys-
tem’s meaning. In [70], the author utilized the convolutional
neural network technique to determine the pedestrian. The
task of this system is to detect the object with sufficient
distance. After that, the system will manage the speed and
braking system. The author describes safety as epistemic
uncertainty, risk, and harm caused by unintended conse-
quences [71]. After that, analysis is performed on the
convenience of optimizing the empiric mean training cost
and choice of the cost function. In [72], the authors de-
scribed the accident issues due to machine learning ap-
proaches and specified inadequate artificial intelligence
systems’ harmful and unintended behavior. For accidental
risk, the authors described five research problems and
further categorised them into a specific area. Several sig-
nificant areas of AV have been described as open problems
such as data are considered as oil in the AV; the amount of
data collected by an AV regularly is approximately petabytes;
and it presents difficulties on the training procedure’s
parallelization along with storage resources:

(i) In safety-critical systems, the usage of the deep
learning approach is still an open problem. Few
efforts are there to bring functional safety and
computational intelligence communities closer.
For example, time-series analysis of AV and its
movement need deep learning for in-depth and
accurate prediction of its feasibility. Deep learning
is helpful in predicting the futuristic trends of AVs
as a close system to operate efficiently. Deep
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learning, one of the most important technologies,
has made the realisation of self-driving cars a re-
ality. For example, it may be used to provide an-
swers to physics questions or to recognize photos
in Google Lens, predict the behavior of vehicle
movements, identify the roadside objects with
more accuracy, among other things. It is a very
adaptable tool that may be used to practically any
situation without restriction.

(ii) It will be difficult to accurately localize, categorize,
and detect objects in the external world to mitigate
perception errors. Perception error is one of the
challenging tasks of AV safety.

(iii) An accurate, stable, and effective decision-making
system should be designed to respond to the
surrounding environment promptly and ade-
quately. To reduce the decision error, compre-
hensive and rigorous software and hardware
system testing should be performed.

(iv) To avoid failure, observe the behavior of the system
in different-different scenarios and situations.

(v) Cybersecurity for AV is the biggest concern for
researchers. How securely wireless communication
can be performed. Security and safety are signifi-
cant concerns that can considerably influence the
public’s attitude towards the rising AV technology.

(vi) The performance of AI techniques mainly depends
on the correctness of the sensor data as input
signals. The input of AI techniques is affected by
sensor issues.

(vii) Vehicle-to-everything (V2X) technology enables
cars to connect with roadside units, vehicles, etc.
Protection in privacy and secure communication
among parties are still significant concerns for
academia and industry people in AV.

(viii) Software updates are taking too much time because
the line of code is increasing day by day. An over-
the-air mechanism has been introduced to over-
come this problem, but many attacks are reported
during the software updates.

6. Artificial Intelligence in IoT-Enabled
Autonomous Vehicles

The role of Internet of Things (IoT) is significant in Industry
4.0 revolution [36]. This is due to the fact that intelligent
autonomous devices communicate for better value chain.
Industry 4.0 is focused on improving the business process.
IoT is very essential for business process in Industry 4.0. The
combination of Al and IoT will enable the researchers and
organizations to achieve fully autonomous Level 5. IoT
collects data, and AI analyzes the collected data to convert
this into relevant information for decisions. IoT becomes
smarter using AI synergy [73]. In AV, data generation,
processing, and communication are required. Furthermore,
traffic congestion and path planning information is sent
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frequently. IoT provides the capability to vehicles to send
and receive data as objects without human intervention.

Speech recognition and NLP are applications of artificial
intelligence. Here, Al-based algorithms can be used to train
the speech recognition system and read the messages written
alongside the roadside units. Thus, speech and NLP are
considered as well-known explanation of Al-based systems.
Autonomous vehicles are developed these days which can
follow the instructions by recognizing speech and text from
base stations. These instructions are forwarded to Auton-
omous vehicles using IoT sensors. Furthermore, Al can be
applied in IoT-enabled Autonomous vehicle to reduce traffic
congestion [74]. Traffic signals and various devices collect
information about traffic using IoT and information is sent
to the Al-based predictive model for decision-making.
Furthermore, updated path information can be sent to
autonomous vehicle. Artificial intelligence and IoT can
handle complex data which are generated form a large
number of devices [75].

Various sensors and devices are connected to the IoT
ecosystem, as depicted in Figure 3. There is requirement of
connected and shared architecture that can communicate
information in real time. For example, device information
should be sent in real time and fast processing so that de-
cision can be made. The advantage is that communication
between devices and AV is efficient. Furthermore, various
parts of AV are connected to a central point that sends and
receives data. This will allow functioning AV effectively.
There are four components in IoT-based autonomous ve-
hicle platforms [36]:

(i) Sensors and hardware components send and receive
data from the vehicle to the vehicle or the base
station.

(ii) Communication network where data will be sent
and received.

(iii) Big Data is a collection of Volume, Velocity, and
Variety data. There is a need for Big Data tech-
nologies to process large-scale data.

(iv) Cloud where data will be saved so that it can be
distributed to various objects.

There are various layers of data transfer between IoT
devices. These data communication can be between vehicle
to vehicle, vehicles to other devices. The decision-making by
autonomous vehicles is based on inputs from various
channels [76]. IoT devices that are connected send and
receive essential data that can be analyzed by autonomous
vehicles only if decision-making is based on AI such as
neural networks or rule-based. The predictive model decides
the output about line keeping, path planning, and object
detection based on data from various sources. Al-based
sensors are essential in AV, but in addition, IoT provides
information about road conditions, weather, and specific
area from connected devices in real-time. In smart cities, AI-
based AV can be connected to the ecosystem for better path
planning.

In Figure 4, communication of various sensors and
devices with AV is depicted. Autonomous vehicle Cameras,
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LiDAR, GPS, and network information are sent to the IoT
cloud. Information is sent to various devices, base stations,
and network infrastructure. Real-time data are possible by
the use of the IoT cloud for better decision-making. IoT can
be essential for Al-based AVs in the following phases:

Data collection: artificial intelligence-based AVs re-
quire a large amount of data for training. Data should
be relevant and in real-time. IoT devices can provide
this in the ecosystem.

Path planning: path planning is based on Monoeuvre
planning used for high-level decisions, and Trajectory
planning used for path from one state to another. In
these planning strategies, IoT is essential to provide
real-time data for efficient path planning.

Act: in this phase, object detection and weather in-
formation-related response is achieved. If data collec-
tion from IoT devices is more and path planning is
efficient, this phase will be processed effectively.

In [77], the significance of intelligent transportation for
IoT-based AVs is highlighted. If maximum tasks can be
implemented in vehicles, it will save computational and data
transfer time.
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7. Research Challenges in Artificial Intelligence-
Enabled Autonomous Vehicles

Autonomous vehicles can decide path planning and motion
control based on a predictive model. There is a need for an
improved Al-based model for AVs. In real-time architec-
ture, each component needs to be addressed. For instance,
recognizing a scene requires object detection and object
tracking [78]. There is a lack of start-to-end depiction in
current AV architectures [79]. The architecture of AVs
should be able to handle system faults and manage scal-
ability. Real-time architecture is required as AVs have to
perceive surroundings with communicating with other ve-
hicles in real-time. Al-based techniques can achieve this. The
main agents in AVs are infrastructure and devices which
should coordinate to perform accurately [80].

Automation levels are classified by the SAE on a scale
from 0 to 5, where 0 signifies no automation and 5 sig-
nifies full performance. Companies and researchers are
putting a lot of effort to achieve Level 5 [81]. SAE] 3016
defines component classes required in architecture as
follows:

(i) Operational: in this class, the focus is on vehicle
control.

(ii) Tactical: in this class, path planning and object
detection, and tracking is planned.

(iii) Strategic: destination planning.

AT has improved AV design, development, validation,
and real-time monitoring significantly. Perception, path
planning, and decision-making can be achieved effectively
by using AI. Al is used in AVs as follows:

(i) Autonomous vehicles decide paths based on a
predictive model.

(ii) Autonomous vehicles learn from history to decide
speed and path.

(iii) The efficiency of the transportation system is
improved.

(iv) Intelligent use of real-time data provided by various
Sensors.

The issues in Al-enabled autonomous vehicles are
elaborated as follows.

7.1. AI-Based Model Issues. There are three steps in the Al
model for autonomous vehicles-data collection, path plan-
ning, and act [36]. In data collection, road, vehicles, and
nearby object information is collected by various sensors. In
path planning, the safe path from point A to point B is
selected by Al techniques. In the act phase, decisions are
finalized based on previous stages. If more data are analyzed,
more accuracy will be obtained. The main issues faced by Al-
based autonomous vehicles are checking road conditions
and large-scale object detection. Highly scalable and fault-
tolerant technologies are required for autonomous vehicles
[47].
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A limited amount of labeled training data is a real issue
for Al in autonomous vehicles [82]. Training data validation
is an open issue that can be addressed by data character-
ization and data collection [83]. Classification is also tricky
on large distances. Data are not reliable in conditions where
the sensor was not working fine. Inconsistent and complex
data training is improper, which may provide incorrect
output during validation and monitoring time.

The autonomous vehicle system was based on a rule-
based controller [84]. Traditional machine learning models
cannot be directly applied due to spatial and temporal data
[85]. Deep learning-based models are suitable for a complex
and nonlinear dataset. Deep learning can be deployed on
new scenarios based on decision rules by knowledge. Deep
learning provides better accuracy in less time. Furthermore,
self-optimization based on complex data can be achieved by
using deep learning. However, deep neural network archi-
tecture requires large-scale data to reduce variance [76]. In
deep learning and machine learning architectures, param-
eter tuning for autonomous vehicles is computationally
expensive. The reason is that there is a lack of information
about how hidden layers and parameters are set up for
autonomous vehicles. The number of layers selected in deep
learning is a significant issue. If the number of layers is less,
training is inadequate, and overfitting may occur if the
number of layers is large. The solutions to problems can be
coordinate descent, random search, and grid search.

7.2. Hardware Issues. The processing of sensor devices re-
quires high processing speed and capacity. High computing
devices rely on GPUs, CPUs, and FPGA [30]. Traditional
CPUs cannot perform the processing required for Al Thus,
several researchers use GPUs for AVs development. The
limitation of GPUs is that GPUs consume ten times more
power as compared to FPGA. Google developed TPU, which
serves 15-20 times better than GPUs [86].

Price and performance issues are associated with
hardware. This is the reason that embedded systems are
integrated into autonomous vehicles due to portability and
energy efficiency. Several autonomous vehicles companies
use LiDAR or high-resolution cameras for detecting and
recognizing objects. LIDAR provides 3D images, whereas the
camera provides 2D photos. LiDAR is used in Audi’s Re-
search vehicle, Google: Toyota Prius, Volvo: (Stoklosa, Cars),
Apple’s Lexus SUVs, and IR camera is used in BMW?750i
xDrive, Apple: Lexus SUVs [30]. LiDAR offers high-reso-
lution 360-degree images but is vulnerable to weather
conditions. The main issue with the use of LIDAR is its cost.
Researchers have found a solution for this, LIDAR is used for
training images, and image data are used for validation
purposes [42]. Perception is problematic in complex areas.
Various sensors are used, which results in the heterogeneous
dataset, which is challenging to analyze.

7.3. Other Issues. Lack of good intelligent software is also an
issue in Al-based autonomous vehicles [42]. Software that
can predict with accuracy based on the unlabeled dataset is
essential. Furthermore, more roads that are covered by
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maps are needed. In developing countries, roads are not
covered on maps which is not easy for path planning in
autonomous vehicles [43]. In Al-enabled AVs, machines
have complete control, so the issue is to design a system in
the ASIL [44, 45].

8. Intelligent System Software and Tools for
Autonomous Vehicles

Autonomous vehicles contain a lot of sensors that feed input
in computing systems [87]. Intelligent and reliable software
is required to process information from various sensors and
decision-making. There are software and tools available
specifically for the design and development phase where the
model is trained on large numbers of 2D and 3D images and
simulators. Furthermore, validation, runtime monitoring,
and analysis of the trained model are necessary for a con-
trolled manner. Specific software is available for this phase.

Software systems for autonomous vehicles should work
like biological systems [88]. Multilayer architecture should
be incorporated into this software. Traditional AI-based
system capability is limited as compared to fuzzy logic and
neural network-based systems. In [88], several types of
system software such as Java Expert System Shell, Fuzzy
Logic in Integrated Learning, Subsumption Architecture,
and Autonomous Robotic Architecture are described. It is
observed by researchers that several types of intelligent
software are based on rule-based and computational
intelligence.

In Figure 5, it is depicted that SysWeaver and SysA-
nalyzer are used to design and develop various modules and
layers. TROCS and AutoSim are used for analysis and
validation. Tools used in autonomous vehicles are as follows:

(i) SysWeaver: it is a model-based design for integrating
hardware and software components. Traditional
programming language-based software cannot
quickly achieve fault tolerance and reliability. These
can be captured by model-based design [87]. It is
designed by [89]. The system generates code when
the model is configured for interfaces. Application
agents, protocol agents, and state managers are
software components. The timing model is based on
rate monotonic scheduling.

(ii) Autism: it is used for various scenarios such as lane
change, etc. It is an emulator that can interact with
the vehicle and allows the vehicle to sense virtual
surroundings.

(iii) SysAnalyzer: this tool is used to schedule various
module timelines synchronously. It can also provide
backup.

In [90], Eclipse IDE is used to implement an autono-
mous car. MATLAB and C++ were used for software de-
velopment. In [91], Dynacar software is used for vehicle
modeling. Various software/languages for autonomous ve-
hicles are as follows:
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FiGure 5: Tools for autonomous vehicle.

(i) OpenPilot is open-source software to improve
existing driving assistance. It is developed by
comma.ai. Various applications such as lane
centring and drive monitoring of OpenPilot are
used in autonomous vehicles. Several companies
are using OpenPilot for improving autonomous
vehicles.

(ii) Carla (https://carla.org/) is open-source software
for research in autonomous driving. Various
functionalities such as flexible API and baselines
are available. CARLA 0.9.11 is a recent version.

(iii) Flow (https://flow-project.github.io/): this open-
source framework is developed by Mobile sensing
lab members at UC Berkeley. Deep reinforcement
learning is used for custom traffic scenarios.

(iv) Point-Cloud library (http://pointclouds.org/): this
library is used for managing point-cloud data.
Furthermore, the Euclidean distance-based algo-
rithm can be implemented by the use of this
library.

(v) OpenCV: this library is used for image processing.
Several APIs are available to process images.
Feature selection and object detection can be
implemented by this library which is essential for
autonomous vehicles. Lane detection, edge de-
tection on images, region of interest, and road sign
recognition are the applications of OpenCV in
autonomous vehicles.

(vi) Java Expert System Shell (JESS) (http://www.
jesruls.com/): JESS is the rule-based engine that
supports forward-chaining and backward chain-
ing. PKD android is developed using JESS. The
inputs are sent using JESS and NLG functions.
JessDE platform is used, which is similar to Eclipse
IDE. JESS is service based on network that is
implemented as hardware. It is also used for
implementing Autonomous Car Assistance.

(vii) FuzzyClips and Fuzzy]: FuzzyCLIPS is developed
in Isaac language, which is rule-based for geo-
metric values. Fuzzy] is a Java-based API that is
used for fuzzy logic systems.

(viii) AuRA: Autonomous Robotic Architecture is a
hybrid-based framework. In the deliberative
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TaBLE 3: Summary of various software/tools for autonomous vehicles.

Software/tool Design techniques Language/development

SysWeaver Model-based Models/Couplers

SysAnalyzer Scheduling Models

AutoSim 3D graphics, simulator Simulator

Flow Deep reinforcement learning Python

OpenCV Image processing, machine learning, object detection C++

JESS Symbolic AI Java

Fuzzy] Fuzzy logic Isaac

AuRA Neural network, genetic algorithm LISPs

component, a plan sequence is included. In the
reactive part, the rum-time controller is included.

In [92], various virtual environments are highlighted.
AirSim [93], ASM, CarMaker, OpenDS, PreScan, Racer, and
VDrift are summarized based on the latest release, acces-
sibility, platform, use-case, and programming languages. In
Table 3, software and tools used for autonomous vehicles are
outlined based on design techniques and language used.

9. Artificial Intelligence-Enabled Testing
Techniques for Autonomous Vehicles

AVs have taken the transportation by a storm. The promises
which it entails surely outweigh the challenges faced in
bringing this technology to the masses and making it
commercially viable. AVs are designed and developed using
integration and interoperability of multiple intelligent sys-
tems driven by machine learning and deep learning algo-
rithms. Almost all of the major car manufacturers such as
Daimler with their MBUX, Hyundai with their Smart Sense,
Audi’s MMI Virtual Cockpit, and many more, in addition to
the involvement of the tech companies such as Watson by
IBM, Google, and Nvidia, are realizing AI's impact on the
services offered and are transitioning towards the devel-
opment and nurturing of AI [94].

The testing techniques that are most used today, e.g.,
miles driven and frequency of human intervention, are
insufficient to fully advocate the safety of an autonomous
vehicle [95]. Such techniques are misleading and cannot
fully satisfy the safety requirements of an autonomous ve-
hicle. The faulted assumptions can lead to failure of the
autonomous vehicle system [96]. Since the autonomous
vehicle itself uses a lot of Al technologies for different de-
cisions, the quality of those decisions cannot be left to
manual testing because of two reasons:

(i) Systems with Al-enabled components can have a
high density of errors due to the algorithmic bias and
faulty predictive algorithms. The prediction of failure
is so nondeterministic that makes the entire Al-
enabled system so hard to test and verify [97].

(ii) Non-Al-enabled testing might leave a lot of people
induced errors which itself might break the whole
concepts of automation [98].

To solve these issues, we explored different ways of
testing autonomous vehicles. This section first reviews the

operational testing of autonomous vehicle consisting of full
functional testing and validation. After that, it assesses the
Al-enabled testing techniques because autonomous vehicle
is a master amalgamation of Al-based technologies. AI-
enabled techniques can shorten the testing and verification
time for vehicle manufacturers and how it can be boon for
making these more secure.

Autonomous vehicles seem to be coming from the sci-fi
world into the real world suddenly. In the past 15 years,
scientists and engineers have been working hard to make it a
reality. However, Auto manufacturers are struggling to fine-
tune AI algorithms that form the brain of the AV through
metallic arms of obstacles and environments. The use of
multidisciplinary sensors such as LiDAR enforces signifi-
cantly different testing requirements not related with Ve-
hicle movement but with respect to accuracy of
measurement of these devices [99]. As 5G is being rolled
out, it opens a new world of possibilities for autonomous
vehicle industry [100]. To take care of these different testing
requirements, the testing of autonomous vehicles will need
to move from functional testing of components to a fully
autonomous testing.

We need to be cognizant not only before the production
and development of these vehicles but also during the whole
lifecycle of the component involved. For example, for the
demand of high level of parallel, time-critical, and fault-
tolerant computing, FPGAs are suitable as they are pro-
grammable and customizable and can process high volumes
of data in parallel on a single chip [101]. These chips need to
be in working for at least 10 years. Nobody has tested the
lifespan of these chips over a decade in outside road con-
ditions. Hence, we need a comprehensive testing approach
and techniques to take care of operational as well as software
scenarios to ensure the quality of these autonomous vehicles.

In Figure 6, the components of autonomous vehicle are
depicted. The testing of GPS, Radar, Sensors, and computing
unit components are required for better functioning of AV.

9.1. Operational Testing Approaches. Autonomous vehicles
are believed to be safe with the researchers’ belief that the
number of car accidents will be reduced. However, some of
the autonomous vehicles crashes have attracted attention all
over the autonomous vehicle industry [102]. The autono-
mous vehicles will spread across the world, so as the testing
of autonomous vehicles on public roads. This will require a
regulatory approach to the autonomous technology [103].
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Components of an Autonomous Vehicles

Light Detection and Ranging

LIDAR utilizes laser lights to measure
distances to still and moving objects

Radar and Ultrasonic Sensors
Measure distance of car from all obestacles
and moving.

Determines speed, road conditions and
overall vehicle behaviour

Global Positioning System (GPS)
-

Allow Autonomous Vehicles to ,”

navigate their surroun

without human interaction

I Central Computing Unit

Main computing which analyses data from
sensors and map them to read conditions

I Video Cameras

Cameras detects traffic lights
Y and signs and help recognize
, the moving objects

FiGure 6: Components of autonomous vehicle.

Operational Testing of
Autonomous Vehicles

User Centered Testing
(i) Drivers’ activities when not
supervising the vehicle or

i ituation
surrounding traffic situations

(ii) Interaction with other vehicles,
road users, infrastructure

(ii) Transition from automated driving
back to driver during the journey

Vehicle Centered Testing
(i) Vehicle behavior in different traffic

Context Centred Testing

(i) Transport system level changes

(ii) Position of other road-users like
pedestrians and cyclists

FIGURE 7: Autonomous vehicle operational testing.

To keep quality checks on an autonomous vehicle pro-
duction, it needs to undergo a high-fidelity operational
testing.

Few governments such as Taiwan have introduced
regulatory frameworks for the testing of autonomous ve-
hicles [104]. US and Chinese AV manufacturers have been
testing the autonomous vehicles since long. Only Waymo
has driven more than 20 million miles of autonomous
driving at the time of writing. A Chinese company, WeRide
has driven a total running distance of 2.6 million km using
autonomous vehicle since its inception in 2019 (https://www.
am.miraeasset.com.hk/insight/race_china_autonomous_vehicle/).

The operational testing of these vehicles can be divided
broadly into vehicle centered testing, user centered testing,
and context centered testing.

The various techniques of operational testing of AV are
presented in Figure 7. An increased dependence on simu-
lated and operational testing seems unavoidable to measure
safety and reliability. Several standards such as IEC61508
and EN50129 include several parts of statistical evaluation
from operational testing [105]. However, the autonomous
vehicle core system relies heavily on machine learning and
artificial intelligence algorithms. Despite intense research,
there is no established operational testing process or tool
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TaBLE 4: Tools for testing of AV.
Underlying

Tool technique Impact area Languages

Facebook AI/ML Automatically identify code quality issues, regressions, security vulnerabilities in Java or C/C++

Infer AI/ML algorithms

Testim.io Deep learning Fast authoring with code flexibility boosts coverage JavaScript

PaddleCV Deep learning Rich official model library, covering various visual tasks Python

mltest Deep learning Machine learning testing framework for TensorFlow Python

Z:Sr:h—test— DL Machine learning testing framework for PyTorch Python

Functionize NLP Low code testing solution NLP-l?ased
testing

which can satisfactorily validate the correct design. We need
a different approach to testing to deal with this VUCA world
which is going to change the face of humanity forever.

9.2. AI-Enabled Testing. There are thousands of algorithms
with millions of lines of code are written in a single au-
tonomous vehicle which will be deciding the next move of
the vehicle in real time. This requires a complete suit of
automation functional tests on source code. The testing
practices used today will require another level of automation
in terms of automatically created test cases and the mapping
of test cases to requirements.

Telemetry usage data, especially errors in real time, are
sent back to the manufacturers. Manufacturers use this real-
time telemetry data to improve their software and send the
system updates over the air. There is no need for every
mobile owner to go back to the manufacturer or a dealer to
fix it until there is anything serious. The car manufacturers
will need a continuous testing facility throughout the life-
cycle of an autonomous vehicle. The simulator- and algo-
rithm-based automated testing can also be integrated. For
example, the Udacity simulator testing which creates dif-
ferent randomly, manually modified scenes to identify the
failures across the system.

Since the core AI- and ML-based systems have millions
of hyperparameters to adjust which makes the normal
testing out of question. We need to use Al-based testing
tools which can adjust these parameters automatically based
on the telemetry data collected from the vehicles over a span
of time. In fact, real-time testing scenarios will be driving the
next upgrade of firmwares which needs to be put in the
autonomous systems. For example, the object detection
systems will need to be continuously improved based on the
real-time telemetry data for which the ML algorithms were
not being trained for. As the real-time telemetry data will
increase, so would be the ability of embedded ML algorithms
for decision-making. According to our research, currently
there is not a single fully compliant testing system which can
make these adjustments in real time and can make the
autonomous vehicle more secure [106].

9.3. AI Tools and Techniques Used. The fault detection in
machine learning applications is like finding a needle in hay
stack because there are no standard practices of creating a

test oracle to verify the correctness of the algorithms used
[107]. Among the vehicle simulators, we can use a variety of
tools. The most known is probably a Driving Simulator
product from IPG makes use of AR and the vehicle-in-the-
loop testing methodology (https://ipg-automotive.com/
products-services/test-systems/driving-simulators/

#augmented-reality-with-vil). It allows the tester to visualize
the different objects in real time with the help of AR glasses.

Another test methodology called the “Hybrid Testing,”
was developed in the scope of the EU-H2020 project
INFRAMIX. This testing enables the evaluation of a real
vehicle in a virtual scenario in an enclosed proving ground.
The testing is usually performed with simulated traffic
components and sensor signals, to make the environment
simulating to real-life [105].

Sometimes because of the issues in the camera devices,
result in a false induction and hence an empty photo. This
might end up in generating an abundance of data in form of
images [108]. Hence the machine learning algorithms used
in autonomous vehicles might process a lot of unwanted
data. A tool such as Zilong software (freely available at under
BSD License) might help too. Vehicle identification is a
crucial technique in autonomous vehicle operations while
running on road. The testing goal should be to generate a test
data of all the vehicle images captured by different cameras
under various viewing angles. This will allow the testing of
different vehicle identification algorithms in an efficient
manner with different test input images. Vehicle companies
should use vehicle re-identification (re-ID) techniques
which can help in reducing the object identification load
[109]. In Table 4, tools for AV testing are elaborated.

10. Autonomous Electric Vehicle and
Its Applications

With rapid industrialization and recent development in the
automobile sector, the need for fossil fuel drastically in-
creased. Due to most gasoline-based vehicles used in routine
transportation operations, GHE is grown and exploited in
the natural environment. Hence, there is a need to save
natural environmental conditions for saving the life of
human beings. Therefore, the transformation of gasoline-
based vehicles to electric vehicles and autonomous vehicles
is essential. The electric vehicle has used the sources of
electrical energy for driving it. Hence, it will save nature
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against GHE and protect human beings against the exploited
environmental conditions.

AV and AEV are driverless vehicles that are simple to
drive, safe, and comfortable in operation. Most of the driver
functions in ordinary vehicles are performed automatically
in AV and AEV with the help of intelligent sensors, intel-
ligent controllers, onboard computers, recent hardware and
software applications, novel algorithms, etc. AV is proper for
physically disabled and elderly people to live their life in-
dependently. Hence, the quality of life of the ordinary person
will be enhanced due to decreasing the GHE and its inde-
pendent operation. Imagine that one of the directors of the
movie has gone to shoot. Still, he forgets the movie’s script
and other correlated important things or any person gone to
do the shopping. He forgets his debit and credit cards,
money, etc. The AV could be capable enough of bringing the
missing items quickly by considering the abovementioned
generalized uses of AEV.

10.1. Specialized Applications of AV/AEV

(i) Public Transportation

AV was introduced initially in the public trans-
portation system in the driverless mode of operation.
Nowadays, modern trends in public transportation
are helpful in the cosmopolitan region for the
tourists, own citizens, etc. Transportation is a big
challenge in crowded, cramped, and cluttered areas
in various cities. Still, due to the introduction of
autonomous electric vehicles (AEVs), it is possible to
manage the issues in crowded places.

(if) Autonomous Underground Vehicle

One of the examples is a fully automated under-
ground vehicle developed in Denmark. Its per-
formance is encouraged to a resident of Denmark
for its further utilization in a transportation
system.

(iii) Autonomous Electric Tram

The first automated electric tram was designed and
developed by Siemens in Germany. In 2018, the
first test drive of the tram was conducted in
Germany for a distance of seven kilometers. The
use of smart devices, such as smart cameras, in-
telligent sensors, and intelligent software-based
LiDAR systems, is helpful to the tram to drive in
crowded areas of various cities without any ob-
stacles. Due to the intelligent algorithm, pram in
front of the tram, and intelligent monitoring and
controlling system, a tram will operate very safely
even in crowded areas. At the occurrence of any
obstacle, the pram will be taking care of it with the
help of other auxiliaries’ apparatus, and the
journey begins immediately after removing the
barrier. During the long and short distance jour-
ney, the trams maintained safety throughout the
trip, automatically stopped the tram at the desired
destination, and immediately began for a different
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destination. Tram responds immediately to
crossing animals, human beings, other moving
vehicles, different types of objects, and any other
obstacles.

(iv) Autonomous Microbus

The testing of an autonomous microbus was
completed in Finland in 2018. The primary ob-
jective of microbus is to reduce public trans-
portation’s load and utilize the available resources
to minimize the GHE. The microbus operated for
approximately seven months from 8.30 a.m. to 4.30
p.m. and completed about 4 to 7 journeys during
working each hour. It is handy for the shorter
distance, transporting the employees of nearby
industries, citizens, etc. The main aim of this
microbus is to motivate people to avail themselves
of this bus to control pollution by 2022 and save
the environment.

(v) Automated Robotics Bus

Again in Finland, another invention of an au-
tonomous vehicle was introduced, called Auto-
mated Robotics Bus. It was also called GACHA. It
is an automated shuttle operating in any weather
conditions. It was the coordination of Japan-Fin-
land efforts. This bus is capable enough of a
driverless mode of operation with accurate ob-
stacle detection, accurate navigation, and posi-
tioning. It is 2.5 meters wide, 5 meters long, and its
height is about 3 m. It is a four-wheeled vehicle that
operates at 45km/hour speed and can cover a
distance of 110 km, and the option of wireless and
wired charging is possible to it. It carries 18 people
in it, such as 11 people in seating mode and seven
standing ways. It is clean, safe, and amicable to
bring the remote peoples together in Finland
during the winter season. It is suitable for all
weather conditions and easily navigates in cloudy
lousy weather conditions such as rains, storms, and
fogs.

(vi) Fully Automated SEDRIC

The Volkswagen group initially launched SEDIRC
Car under an autonomous level of 5. It is simple,
well electrified, well digitally networked, safer, and
sustainable. Due to being digitally interfaced, it is
available at any interval, such as hiring a taxi. In
2017, voice commands and control button-based
operating cars were launched in the motor show of
Geneva. Due to the absence of a steering wheel,
paddles, etc., it provides sufficient space and suf-
ficient comfort during the journey. The journey
information is mentioned in its display such as the
length of distance in km, speed, time required to
reach, safety, and traffic congestion.

(vii) Automated Electric Volvo Bus

A fully automated Volvo electric bus was designed
and developed in 2019 in association with Singapore
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University. It has a carrying capacity of 75 seats with
a driverless mode of operation. Obstacles detection
and control are obtained by using LIDAR 5 intel-
ligent sensors. Automated Electric Volvo bus offers
high flexibility, safety, compactness, reliability,
sustainability, and high efficiency. Hence shortly,
this bus will be reflected in public transportation.

(viii) Autonomous Electric Helicopter

VSR700 is one of innovated prototype Autono-
mous Electric Helicopters invented in 2020 by
Airbus under the heavy test drive in France. It is
designed and developed for operating alongside
various naval assets. The objective is to empower
the ships, enhance their scope by using intelligent
sensors in association with helicopters, and en-
hance the information collection scenario from
ship perspectives. Autonomous Helicopters are
doing the job of surveillance of their targets’ in-
formation and confirm the destination of reaching
the ships at desired locations. Sustainability is
enhanced in modern ships and autonomous he-
licopters by using faster intelligent sensors.

(ix) Autonomous Smart Truck

A fully automated electric truck was designed and
developed in 2016 by the name Otto. Without a
human driver, it operates with the help of the
LIDAR system. These modern trucks are mini-
mizing accidents and utilized for delivering heavy
goods and services. In addition to this, Vera as
Volvo autonomous electric truck is designed and
developed for carrying goods from various desti-
nations such as industries, dockyards, mines, ports,
storage yards, and warehouses and has very effi-
cient, safer, clean, and sustainable ways than or-
dinary trucks. Using intelligent cameras and other
sensing devices, these Vera trucks are smartly
operating, positioning, detecting, and controlling
in more innovative ways and decreasing waiting
periods and pollution. Hence, their performance
increases technically and economically.

(x) Google Self-Driving Waymo

The testing of Waymo vehicles such as trucks and
cars was completed in various weather conditions
and road conditions in California. Driverless mode
of operations is considered using computer-inte-
grated cockpit and various sensing and controlling
devices. It provides security and safety during the
journey with information about other vehicles
nearby.

(xi) Fully Autonomous Shuttle

In England, a fully autonomous Shuttle was
designed and developed in 2017 by Harry’s name
and tested in London. In the UK, places where the
lack of public transportation or no buses, no trains
nearby the various locations for public transpira-
tion, decided to enhance the public transportation
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more smartly. Hence, these shuttles are used in
such areas to improve the efficiency of transport. It
is acquired near about 5 to 6 people and covers the
distance of 12 kms. It is operated using intelligent
sensors, intelligent cameras, LiDAR, and other
smart monitoring and control systems.

(xii) Autonomous Metro Train

It is a fully automated train design and developed
by China in 2020 for the country Turkey. It is
operating at a speed of 130km/hr. It can carry
about 1200 passengers with 4 to 5 carriages.

(xiii) Nuro’s Fully Automated Vehicle

It is helpful for elders, the physically disabled, etc.
It is also beneficial for transporting goods from one
place to another place. It was developed in 2018 for
delivering goods in a driverless manner [110].

(xiv) Autonomous Underwater Vehicle

It is used in marine earth science and is popular in
the technical and defense sector also. The primary
function of this vehicle is to obtain an improved
image of the seafloor with a very high resolution
from the vessel’s surface. The different types of
underwater vehicles are marine robots, hybrid
automated underwater vehicles (AUV), bluefin
Hovering AUV, AUV Urashima, hyper dolphin,
and solar-powered autonomous vehicles II
(SAUV) [111].

(xv) Autonomous Vehicles for Agriculture and Mining

Autonomous vehicles are used in the agriculture
sector for various farming processes and used in
mining operational tasks. Different types of agri-
culture and mining autonomous vehicles are au-
tonomous agriculture tractors, unmanned ground
vehicles used for smart farms, mining vehicles such
as mining trucks, mining automated machines, etc.

(xvi) Automated Rover

It is an autonomous vehicle utilized for indoor and
outdoor applications. It is an unmanned vehicle
used where human intervention is not easily
possible in various conditions. In those applica-
tions, self-detection and diagnosis of faults are the
leading features of Rover [112].

11. Power Train Energy Management and
Machine Learning Applications in AEV

The power train is defined as the generation of electric power
with the help of different sets of components and subsystems
in the EV to drive the wheels of the EV and move the vehicle
from one place to another. The power train of an IC Engine
vehicle is complex rather than an EV. Ordinary IC Engine
vehicles have more than 100 moving components are
present and out of which engine is the main component of a
power train. Similarly, the various subcomponents and
subsystems are axles, more comprehensive cooling systems,
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differential transmission systems, drive shaft control systems
for emission, etc. are used in EV. In the EV/AEV power
train, 65% fewer subcomponents are used than the IC
Engine vehicle power train.

The power train of EV/AEV consists of the following
features: battery bank, DC to AC converter, controller for
motor, electric drive motor, smart onboard charger, battery
management system, DC to DC converter, intelligent
temperature monitoring system, intelligent body control
module, etc. These components are elaborated in the next
section.

11.1. Essential Components of the Power Train of AEV/EV.

Battery Bank: its function is to store the energy in
chemical form during the charging mode of operation
and release electrical energy during its discharging mode
of operation. It consists of different types of lithium ion
cells used in series or parallel or combines hybrid ways.

Converter (DC to AC): DC output power obtained
from the battery bank is converted into AC, and this
AC power is utilized for driving the electric motor.

Motor Controller: it is also called a power train con-
troller. It controls the desired rated speed and fre-
quency of power feed to the motor. So that maintains
the acceleration and related speed according to in-
formation of driver communication through acceler-
ation and brakes.

Electric drive motor: it is utilized for the movement of
vehicles. It converts battery-based electrical energy into
shaft power movement of wheels of vehicles through its
transmission system. Similarly, regenerative braking
can be used under this mode of operation.

Charger on board: charging point of AC supply is
converted into DC supply. Using a control system
controls the technical parameters of the battery banks,
such as current through the battery bank.

In addition to the above primary components, various
hardware and software systems are present in EV/AEV
power train systems such as electronic control unit, battery
management system, thermal control, body control unit, and
DC to DC converter, which are used in AEV. Data exchange
and data processing are conducted under various software
programs integrated with the EV power train system. Many
electronics control units are used in AEV for performing a
particular function.

Uniformity of equal voltage levels in all lithium ion
battery cells is maintained using a battery management
system (BMS). Itis routine monitoring and controlling a cell’s
voltage to avoid malfunction and protect the system. The
stable balancing of cells is obtained by using BMS and en-
hanced efficiency of the battery bank. It is also communicated
very properly with EVSE, different electronic control units to
maintain the rated parameters at the charging points. Various
subsections of AEV/EV are getting the power by using the
battery. Still, each subsection, such as mirror control, Horne,
parking light, wipers, and lights, required a different voltage.
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Hence, the DC to DC converter issued herewith fulfills their
voltage needs besides the standard voltage levels.

A temperature control system monitors and controls the
rated or optimum temperature of the power train system in
AEV. So that avoids if any inconvenience during the normal
running conditions of AEV. A body control unit also monitors
and controls routine operations of AEV such as vehicle access
control, mirror control, and power windows controls.

11.2. Power Train Efficiency in AEVS/EV and ICEVs.
Power train efliciency of AEV is a ratio of power required to
a vehicle to complete the drive cycle to its consumption of
fuel energy. The comparative analysis of AEVs and ICEVs is
mentioned in Figure 8. The energy input of ICEV is 100%.
Out of which adequate energy is 15%, the rest of the per-
centages are consumed by various losses such as Idling loss
17%, energy loss 62%, and driveline losses 6%. In AEV, by
considering the energy input of 100%, the adequate energy is
about 80%, and the rest of the losses are only 20%, i.e.,
electrical losses are 145, and driveline losses are 6%.

11.3. Significance of Machine Learning and Deep Learning in
the Operation of Autonomous Electric Vehicles. As per the
global scenario, 1.40 billion road accidents are occurring
each year, and a leading cause of accidents is the crashing of
vehicles due to human mistakes and error. Hence, due to
autonomous vehicles, the percentage of accidents decreases
and saves human beings’ lives. The cost of delivery is re-
ducing due to the driverless mode of operation, and the
vehicle’s performance drastically rises. Machine learning
(ML) can be used in the autonomous vehicle for the Ad-
vanced Driver Assistance System (ADAS) function to en-
hance a vehicle’s entire performance. ML performs the
various roles in the routine operation of autonomous electric
vehicles are as follows.

Classification of obstacles, objects, and their intelligent
detection: in existing vehicles, smart sensors, high definition
cameras, LiDAR, Radar, etc., technology-based intelligent
devices are used for the detection, classification of various
obstacles, and objects. The results obtained from this system
are satisfactory, but there are chances to get the wrong
category of things due to the slight difference in pixel of
images. There is the chance of accidents being created due to
the wrong interpretation of images, and evil actions may
happen. Due to the proper involvement of the intelligent,
trained ML model in existing autonomous vehicles, the
system’s perception can be enhanced, precisely identifying
the obstacles or objects. So, the accuracy of detection of
objects is improved with safety and security using the ML
model in AEV. Also usage of deep learning (DL) intelligent
software developed the intelligent algorithms for training the
neural network (NN) system in AEV. Using an image
processor of different objects accurately classifies and de-
tects, and accordingly, the vehicles react for further actions
such as lane detection, stay in highway lanes, and path
prediction very accurately. Distinguishing between human
beings on highways, animals, other vehicles, lamp posts, etc.
can be efficiently and accurately possible using ML and NN.
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Figure 8: Efficiency of ICEV and AEV/EV [113].

The speed of moving objects, directions, free spaces, etc.
quickly understands by ML.

Power Train in AEV using ML and DL: the various real-
time data points are produced in the power train. By ap-
plying ML to these data points, the function of battery
management, controlling of motors, etc. are improving.
According to available power train data changes, ML offers
the flexibility of boundary conditions as per the ages of the
vehicle’s system. Even changing operating conditions, the
ML-based system has sufficient computing capability and is
helpful even in real-time surrounding environmental con-
ditions. The system is capable enough to identify the ir-
regularities and provides regular information about
warnings, maintenance, failure of motor controls, etc.

Security, safety, and reliability of AEV using ML: ML
ensures the accurate operation of vehicles and avoids various
accidents. ML also prevents accidents due to failures of
different smart devices such as sensors, Radar, Cameras, and
LiDAR. The data of multiple subsystems, such as state of
charge, temperature control, speed, range, and battery level,
are recorded. Furthermore, it is analyzed to conclude the
performance of the AEV subsystem, such as motor per-
formance and health index of AEV. The indicating system
quickly concludes whether the AEV/EV operating is the
average or abnormal mode of operations.

Identification of hacking, cyberattacks, and privacy in
AEV-related data: using networking and intelligent comput-
erized protected system with ML to ensure the security and
confirm the detection of cyberattacks, hacking, etc. and
overcome these problems quickly. Data privacy is easily
maintained by using ML. Optimization of energy consump-
tion in power train-based AEV/EV is obtained by combining
Big Data from various sensors used in AEV/EV and ML.

12. Autonomous Driving Subsystems in AEV

Electric vehicles require multidisciplinary technologies such
as electrical engineering, chemical engineering, and auto-
mobile/mechanical engineering. Furthermore, the Electrical
Engineering system requires electric machines, power
electronics, control systems, energy, battery management,
and charging. Mechanical/Automobile Engineering involves
gearing differential, chassis, suspension braking, steering,
etc. The knowledge of IC Engines is also required in HEV.
Chemical Engineering involves knowledge of batteries and

different kinds of chemical features and knowledge of fuel
cells. Battery and fuel cells are energy sources, and it also
requires the knowledge of fuels such as liquid and gases,
which is helpful for EV development.

12.1. Electric Vehicle Subsystems and Configurations. It is
classified into two types: (i) converted electric vehicle
(retrofitting) and (ii) purpose-built.

(i) Converted Electric Vehicle/Retrofitting

Converting an existing diesel engine or petrol engine
based vehicle to electric vehicle in place of IC Engine
similar rated electrical motor is fitted and the rest of
components are kept the same without any change.
This type of EV design is simple, and it can use IC
engine-based used vehicles of 15 to 20 years. This
kind of EV is popular only when the cost to a
customer per kilometer of driving is less in the
converted EV than diesel engine/petrol engine EV.
This is not a high-performance EV
(ii) Purpose-Built

All modern EVs are purpose-built. Purpose-built EV
means the body and frame of the vehicle are nearly
designed such that it takes into the set ration the
structural requirements of the EV, and it also uses all
the flexibility that the EV system offers. In IC En-
gine-based vehicles, the power flow or the energy
flow is done mechanically. It uses bolted frames and
rigid systems to transfer energy from one system to
another. However, in EV, the power flow is done
using electric wires, which are very flexible. It allows
the distinction of different components of an EV
throughout the vehicle, and energy transfer can be
done using flexible wires. Hence, distinction flexi-
bilities are very high in purpose-built EV. Type of the
propulsion system used in EV is also a deciding
factor. There may be gears or gearless; some may use
a differential, others may not, some may use the
single motor, and others may use multiple or dual
motors. So, depending on the type of EV, the design
of EV has to be done. It cannot be the same for all
kinds of configurations. The type of energy sources
used in an EV decides the design of EV a lot, so if a
single battery-based vehicle is designed, it has to be



Mobile Information Systems

Energy Source
of Autonomous
Electric Vehicle

21

FIGURE 9: Propulsion system of EV.

suitable. If a multibattery system, it has to be done in
another way. So, batteries can be used in the chassis
of the vehicle, on the top side of the vehicle, or in the
vehicle’s luggage space. Hence, all these possibilities
are there, and they can be connected using a wiring
arrangement. The design must be different when
using a fuel cell in a fuel electric vehicle because the
fuel to be stored is hydrogen. It requires a lot of
auxiliary systems. Charging system is essential. The
charging system for different types of energy uses
may be different. It can be a board charger; it can be
an IPT kind of system where secondary coils are to
be installed in the vehicle. All these requirements
have to be taken into considerations while designing
a purpose-based EV.

12.2. Components of EV System. The essential component of
the EV system is an electrical propulsion system. Under this
system power converter, controller, power electronics,
motor transmission, gears, and differential gears are used.
The performance of EVs is increased by optimizing these
subcomponents. EV will get higher performance operation
with minimum energy. The motor is designed to have high
power density; it has high torque density and efficiency in
wide speed and torque ranges. Power electronics are gen-
erally created at a high switching frequency. Loss-making
components such as gears and the differential can be
avoided, but employing complicated control is the job of a
complex control system or the controller.

12.3. The Propulsion System of EV. The movement of EV is
obtained by using a propulsion system. Figure 9 shows the
electric vehicle propulsion system [114]. Initially, energy is
extracted from the energy sources such as conventional and
nonconventional renewable energy sources. The raw power
is processed and converted from one level to another by
using different intelligent converters.

The stable energy supply is feeding to the electric drive
motor, and the rotation of the engine is utilized for driving
the wheels of EV with the help of a transmission system;
finally, EV is starting to rotate. The propulsion system of EV
is depicted in Figure 9.

12.4. Autonomous Electric Vehicle (AEV) Driving Subsystem.
It is a complex system consisting of various driving sub-
systems such as object sensing, perception, and decision-
making. Also, it consists of a robotics operating system,
various hardware, the platform for cloud computing, devices
for data storage, modeling and simulation, ML- and DL-
based different training models, high definition mapping,
and novel algorithms.
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FiGure 10: Advanced technologies for autonomous vehicles.

It collects the raw data from various sensors and extracts
essential information from sensors using algorithms sub-
systems. This algorithm information further gets the need for
reliability and real-time data. The cloud platforms offer the
offline computation of data and store the data in a different
storage system of AEV using the medium of clouds. It is
possible to test various types of novel algorithms and update
mapping at a high definition range and offer intelligent rec-
ognition, following tracing with a particular decision of model.

AEVs are considered the future of vehicles, whereas the
intelligent grid appears to be the grid of the future. Vehicle to
Grid (V to G) is the link between these two technologies, and
both get benefitted from it. Much research is going on to
make electronics sensors in EVs more compact, rugged, and
cheaper. Development of charging infrastructure with re-
quired EVSE should be significantly considered for safe and
controlled energy transfer to EVs. Customer acceptance can
be enhanced by increasing desired safety standards, reli-
ability, durability, and efficiency of battery chargers with
reduced charger cost. The modernization of the power
system accelerates the utilization of EVs in terms of V to G
technology. In an innovative grid environment, EVs become
a possible solution to balance the power fluctuations due to
the intermittent nature of RES [115-119].

13. Advanced Technologies and
Autonomous Vehicles

This section discusses advanced technologies that play a vital
role in the enhancement of autonomous vehicles. The
technologies such as Internet of Things (IoT), cloud com-
puting, autonomous drones, constraint programming, and
knowledge representation, along with artificial intelligence,
are explored in this section. Figure 10 illustrates the key
technologies for autonomous vehicles.
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13.1. Artificial Intelligence, IoT, and Autonomous Vehicles.
The convergence of Al and IoT have emerged as an essential
domain towards enhancing human QoL. The automotive
industry has begun to adopt digital systems and applications
from product services to customers. In recent decades, ar-
tificial intelligence and IoT have perpetuated the develop-
ment of connected autonomous vehicles independent of
human interventions as drivers. Significant enhancements in
servicing technologies, control systems, and high computing
capability have empowered the development and perfor-
mance of autonomous vehicles. The service values such as
safety, cost, fuel efficiency, user comfort, and in-vehicle
quality of experience are more focused.

The primary objective of IoT is to digitally sense,
measure, analyze, and decision-making in a real-world
scenario. These digital devices are interconnected globally
through Internet as a backbone network to achieve extensive
scalability. El-Hassan et al. [120] discussed the low-cost
sensor-based intelligent systems for detecting road obstacles,
collision avoidance strategy, traffic signal identification, lane
identification, lane monitoring, and halt responses. The
authors discussed the challenges between innovative pro-
totype systems and real-world road systems for automotive
vehicles. Wang et al. [121] addressed the control theory
analysis for automotive vehicles over the brilliant system
performance such as control, stabilization, and reachable
components of the automotive system. The comparative
study was conducted between autonomous vehicles and
human drivers under a simulated environment for a mixed
traffic scenario. Safavi et al. [122] addressed autonomous
vehicle health forecasting using the Internet of Things and
artificial intelligence. The sensors are the critical part of the
intelligent system of autonomous vehicles; however, these
sensors may fail to function properly due to various dynamic
factors. To the multiple sensor failures, the authors proposed
a neural network-based framework that involves sensor fault
detection, faulty sensor isolation, faulty sensor identification,
and forecasting of sensor health. Furthermore, the authors
elaborate on the forecasting categories, including monotonic
system life prediction and nonmonotonic behavior pre-
diction. In Table 5, advanced technologies are summarized
based on Cloud, Fog, and Edge computing.

13.2. Artificial Intelligence, Cloud Computing, and Autono-
mous Vehicles. Fog computing is a paradigm shift in a
computing platform that brings cloud computing facilities
nearer to the edge system. Delay sensitive applications such as
vehicular communication, data analytics, and data processing
are carried at the proximity of the edge devices. Fog computing
eliminates the delay and unnecessary network hoping. Soo-
khak et al. [123] discussed the need for fog vehicular com-
puting to augment computational power and offloading data
for storage. The authors proposed a fog vehicular computing
framework consisting of four layers: edge network layer,
service layer, core network layer, and cloud layer. The edge
network layer consists of an embedded system and intelligent
things. The service layer performed field area network service
and multiedge services through fog computing servers. The
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core layer performs IP protocol, security, QoS, and broad-
casting. The cloud layer consists of data centers and cloud
computing systems. Kong et al. [126] proposed the offloading
of LIDAR sensor measurements from autonomous vehicles to
the edge cloud servers for processing and analysis. The sensors
generated environment data were transmitted to a lamp post
for sharing with other passing autonomous vehicles.

13.3. Artificial Intelligence, Drones, and Autonomous Vehicles.
IoT-enabled drone-based application has widely perpetu-
ated into the parcel delivery system. The integrated truck
delivery approach and support from the drone systems have
overcome the limitation in both delivery systems. The
drones have computational resource limitations such as
battery power and low payload. At the same time, the truck
delivery system has the demerits of long hauling duration
and lack of interior area coverage for parcel delivery. Wang
et al. [138] discussed the combination of drone and truck-
based parcel delivery systems. The authors proposed a
framework for a simultaneous truck drone parcel delivery
system. Three independent parcel delivery systems, namely,
truck parcel delivery system, hybrid truck drone, and
standalone drone parcel delivery system, have been explored
in detail. The authors proposed scheduling and routing
algorithms for the hybridized truck drone parcel delivery
system. Sa et al. [139] presented an efficient framework for
hybridized truck drone-based LMD. The collaborative
routing strategy for truck routing along with a fleet of drones
was discussed.

The estimation of efficient truck parking from where the
drone can fly to deliver the parcel to customers was pro-
posed. The collaborative routing is framed as an optimi-
zation problem using mixed linear integer mathematical
model formulation [140]. The objective of this optimization
problem is to minimize the delivery makespan to the last-
mile customers. A greedy randomized metaheuristic-based
feasible solution for a large-size problem was proposed.
Fotouhi et al. [141] proposed a cost-effective visual-inertial
(VI) odometry-based autonomous drone (VIOL) system.
These VTOL-based autonomous drones are widely utilized
for building infrastructure inspection, aerial surveillance,
precision agriculture, and aerial cinematography [142].
These tasks require high performance in controller mech-
anism, low latency, obstacle avoidance, precise decision in
landing and take-oft, object tracking and picking and ma-
neuver, and path planning.

Authors contributed to develop open-source software
for system identification, calibrating parameters, and state
estimation in different dynamic environments. Moon et al.
[143] presented the various challenges towards autonomous
drone racing technology. The authors analyzed the possi-
bility of waypoint sequence estimation for the autonomous
drone. Further high- and low-level navigations in the indoor
and outdoor environment were studied. Patrik et al. [144]
addressed autonomous drone systems for parcel delivery
using the GNS. The medical aid delivery for patients in a
remote natural calamitic scenario was considered for the
study. The autonomous drone was assigned with the task
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TABLE 6: Research on autonomous vehicles by different companies.

Year Manufacturing company

Contribution by the companies

1920 Houdina Radio control, Chandler Motor car

Houdina introduced Radio-controlled cars in 1925.
In 1926, Chandler Motor car introduced an antenna that operated
small electric motors which directed every movement of the
vehicle.

1930 General Motors

Radio-controlled cars driven by electromagnetic fields
accompanied by circuits inserted in roadways.

1950 General Motors Firebird, Radio Corporation of America

Electronic guide systems using wires were introduced by the
General Motors Firebird.

1960

Citroen DS, Bendix Corporation, Stanford University, etc.

Citroen DS introduced magnetic cables embedded in the road in
1960.

In 1970, Bendix Corporation introduced AV’s powered and
controlled by buried cables with roadside communicators
depending on computer messages.

Stanford developed a small wheeled robot.

1980 etc.

Defense Advanced Research Projects Agency, Mercedes Benz,

Mercedes Benz in the year 1980 developed a vision-guided robotic
van.
In the same decade, DARPA-introduced an Autonomous Land
driven Vehicle for the first time which used Lidars, computer
vision, and robotic control.

VaMP,Vita-2, Mercedes Benz, Jaguar Cars, Park Shuttle,

1990 People Mover, etc.

In 1994, twin robots of VaMP and Vita-2 of Daimler Benz
introduced AV’s passing in lane system and lane changes with
autonomous passing cars. Jaguar cars funded Lucas Industries for
making parts for semiautonomous cars.Park Shuttle was the first
promoted driver less people mover that used artificial reference
points inserted into the road surface to cross check its position.

National Institute of Standards and Technology, DARPA,

2000 Radio-frequency identification, Royal Academy of

Engineering, Toyota, aluminium division of Rio Tinto, Google

In 1998, Toyoto was the first to introduce Advance Cruise Control
(ACC) on a production vehicle disclosing a laser-based system for
its luxury sedan version.

2003 Tesla

Various models are developed by Tesla such as Model S, Model 3,
Model Y, and Model X. Tesla Semi, Cybertruck, and Roadster are
also in development phase.

2017-

18 Apple

Apple’s self-driving car effort, Project Titan, lost around 200
employees in January 2019. Apple bought Drive.ai five months
later. Apple is purportedly buying the company to hire its people
rather than buy its technology. With its self-driving vehicle fleet,

Apple spent 2018. The California Department of Motor
Automobiles registered 70 vehicles in September 2018. Apple’s
fleet logged 80,739 km of autonomous driving between April 2017

and November 2018.

2020 Audi

Ford makes its debut with hands-free technology in a car. The
European Union has authorized the deployment of the A8’s self-
driving capability on public roads. The former Tesla Autopilot
manager now serves as the CTO of Audi’s Autonomous Intelligent
Driving (AID) business.

2020 Autoliv

An airbag in the form of a cocoon is being developed in
conjunction with Autoliv and will be integrated into the seat
frame. In the case of an accident, it would protect drivers from
flying debris or unbuckled passengers in the backseat. A prototype
of the car was shown off at the AutoMobili-D exhibition in
Detroit, Michigan, in January 2019.

such as object deductions and destination position reach-
ability using GPS. The authors also proposed an auto drone
navigation algorithm based on the positional deviation
between the actual and desired landing positions.

13.4. Artificial Intelligence, Knowledge Representation, and
Autonomous Vehicles. Gregor et al. [140] addressed

situational awareness by ontology framework for an au-
tonomous vehicle in the manufacturing industry. The se-
mantic representation is essential for reasoning systems and
internal state machines to achieve the goal of the desired
tasks. Pellkofer and Dickmanns [145] proposed an ontology
to perceive the autonomous vehicle environment and robot
telemetry. The work also discussed the knowledge graph for
IoT robotic domine in the intelligent automotive production
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intralogistics environment. Asmar et al. [146] examined the
multifocal dynamic visual system for an autonomous ve-
hicle. The advanced vision system consisted of the camera on
a high bandwidth pan-tilt holder that performed the active
gazing for the independent system. The authors addressed
both static and dynamic knowledge representation. The
static knowledge included a digital map of the real-world
knowledge repository about the apriority performance pa-
rameters. In Table 6, advanced research on AV by various
companies is presented.

The dynamic knowledge included computers, processes,
scene trees, and sequence of tasks representing the mission
objects [147]. The proposed system consists of decision-
making units that performed three tasks, namely, behavior
decision for vehicle gazing, behavior decision for maneuver,
and centrally coordinated behavior for decision-making.
Zhao et al. [148] addressed the knowledge representation for
autonomous vehicle driving environment in a machine-
readable format. Ontologies were proposed for safe driving
based on road maps, driving lanes, and surrounding driving.
The authors proposed core ontologies for the enhanced
driver assistance control system. The proposed ontology
included map ontology, control ontology, and car ontology.
The map ontology describes the road network with the
roads, lanes, markings, road intersections, and traffic signal
status. The control ontology described the driving action,
driving state, and maneuver path of the autonomous vehicle
based on the GPS. The car ontology contained the details
about sensors, vehicle engine status, the vehicle’s exact lo-
cation, and the vehicle’s speed.

13.5. Artificial Intelligence, Machine Learning, and Internet of
Things for Autonomous Heavy Vehicles. The concept of
autonomous vehicles, where manual driving is not required,
has gained many in this busy life. It has made many au-
tomotive manufacturers exploit every opportunity in de-
veloping autonomous vehicles. The technologies such as
artificial intelligence, machine learning, and IoT have raised
hopes for autonomous vehicles. This evolution leads to the
enhancement of data analysis and prediction processes and
procedures. Artificial intelligence has gained a wide range of
scope in various autonomous sectors [149]. Till now, driving
assistance systems such as proximity sensors and ADAS are
experienced. Now, a step ahead with machine learning and
IoT concepts, the future is driving towards autonomous
vehicles. Competition in the current vehicle industry forced
companies to adapt to the rapidly changing environments
with technologies, improved features, safety, automation,
and data transfer. The AI and IoT in combination will
enhance the change for self-driving autonomous vehicles
(AVs). This article lets us know how the latest developments
of Al and IoT will assist in the quest for automated vehicles
[149].

Al, ML, and IoT are the fields of computer science used
to develop intelligent devices and intelligent machines.
These Intelligent machines such as AVs respond and react
like human brains through ML and Al In the goal for
evolving at full automation (i.e., self-driving), it is prominent
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to know how Al works in hand with AV. Automated vehicles
use significant amounts of input data from sensors and
intelligent devices. These sensors of AV provide inputs such
as time frame, movement detection, navigation directions,
image recognition, voice, and word recognition, multiple
touch recognition, virtual assistance, vehicle speed, vehicle
acceleration and decelerations, mileage information, fuel
status, vehicle location, and position [114, 150].

In October 2010, Segway Incorporated and General
Motors jointly advanced a two-seat electric car with new
features such as self-vehicle parking, crash avoidance, and
vehicle patrol. In 2011, Volkswagen group commenced
HAVEit, having features such as Radar systems, cruise
control, side observation for safer lane-changing, and TAP
mode to maintain a particular distance from other vehicles.
In 2014, Nissan’s Infiniti Q50 introduced a virtual steering
column. In 2018, Google planned to release self-driving cars
with all the features such as lane-changing and hassle-free
parking, with all the Adaptive Cruise control options [151].

13.6. AIin Autonomous Vehicles. Al in autonomous vehicles
is applied in the following phases:

(i) Information Collection

AVs are built with multiple sensors and intelligent
devices such as Radar sensors, cameras to capture
images, and brilliant communication cables to
produce a considerable amount of data from vehicle
and vehicle surroundings. This information has the
lane information, road signals, road signs, sur-
rounding vehicles movement tracking and vulner-
able road user’s data, parking location details, and
traffic status. This information is then sent and
further processed.

(ii) Path Planning

This bulk data from AV systems will be stored and
clubbed with past data from earlier rides in a da-
tabase known as Big Data. Al agents act on this Big
Data to produce sorted and meaningful algorithms
by strategy control.
(iii) Act

The decisions made by AI agents are used to detect
objects, traffic, parking areas, and bicycles; pedes-
trians make the AV reach the destination safely.
AVs are also equipped with function controls such
as steering control, gestures, and speech recogni-
tion. Al agents are responsible for making final
decisions in demanding driving situations.

13.7. Challenges in AI-Driven Automated Vehicles

(i) Sensor issues

Sensors of the AV play a significant role in the
automation process. Sensors can be classified
mainly in 3 ways. Firstly, by using the already
existing sensors, i.e., speed sensor, acceleration
sensor, fuel sensor, steering angle sensor, etc.
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Secondly, positioning sensors of the vehicle, i.e.,
GPS. Thirdly, surrounding sensors such as markings
on the road, inclination, signboards, weather up-
dates, surrounding vehicles detection, and vulner-
able user’s detections.

(ii) Complexity and uncertainty

Complexity involves dealing with vast amounts of
information gathered from sensors and training the
data model. Uncertainty occurs during sensor data
collection; there may be noise that makes the input
errors given to the sensors.

(iii) Complex model tuning issues

Deep learning, machine learning, and reinforce-
ment learning methods are used in AVs. As a result,
complex data models are generated, and then the
parameter calibration for these models becomes
complex. End-user has to develop a suitable tuning
model by costly trial and error method. For ex-
ample, we use supervised learning algorithms in
automated vehicles and suppose if the trained data
set and the input dataset are entirely different in
some situations such as the traffic on the lanes,
which is unpredictable, here comes a problem of
complex model tuning issues. Training the datasets
of metropolitan, cities, semi-urban and rural areas
also involves complex model tuning issues. The
passing of information from trained datasets to test
datasets also becomes a great challenge for the ar-
tificial intelligence technical approach in automated
vehicles.

(iv) Solving the hardware problem

Multiple computing systems are interconnected in
AVs. Different computing models were proposed,
such as multicore systems including CPUs, het-
erogeneous systems, and distributed computing
systems are used in AV. The significant issues with
GPU, CPU, and programmable gate arrays are
programmed to change image processing and
computer graphics. All these are used in real-time
testing applications, and the cost becomes high for
commercial deployment. Hence, there is a need for
advanced hardware implementation.

13.8. Statistical Learning Methods in Autonomous Vehicles.
Considering different types of accidents such as rear crashes
that occur frequently, driving style plays an essential role in
designing ADAS Systems and Vehicle control systems. In
ADAS systems, inputs for different driving styles are con-
sidered statistical methods such as acceleration, relative
distance, and relative velocity [152]. Some statistical tech-
niques used to find additional driving assistance are collision
risk surrogates, trajectory feature extraction, discrete wavelet
transform, and discrete Fourier transform [150]. In Coop-
erative Adaptive Cruise Control vehicles, we use statistical
models to calculate real-time inconsistency in-vehicle
communication, and kinematics laws are considered.
According to an article by [149] Wang and Li, the safety of an
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autonomous vehicle depends on the driver’s performance
and road crash tests performed in a suitable environment. By
utilizing the data of automated vehicle crash details, sta-
tistical methods, logistic regression, and data classification
are achieved.

In recent years, the emergence of connected autono-
mous vehicles are noticed. According to Yan [153], carrying
sensors and connected vehicles can increase energy
adaptability, better routing, and less traffic on roads. To
calculate the usage fuel and discharge of fuel used unsu-
pervised learning methods are applied on the real-world
datasets of autonomous vehicles. Using unsupervised
learning techniques, a new way for segregating driving
conditions concerning velocity and acceleration has been
applied on real-time AV datasets that work effectively [154].
As a reference from an article by Wanchfeld, unsupervised
methods and statistical methods are to be applied to achieve
autonomous vehicles’ safety on-road testing. A linear dy-
namic system and a mixture of a linear dynamic system for
context-aware robot system and expectation minimization
were used to learn the model [155]. An optimal unsuper-
vised algorithm was introduced to increase the fastness of
the response, and hierarchical, K-means, and Gaussian
matrix models were used to optimize the path for vehicles
[156]. Vishnukumar et al. proposed a novel method using
Al core-based machine and deep learning algorithms for
real-time applications such as T&V and Advanced Driver
Assistance System (ADAS) to improve their efficiency [157].
Mishra et al. proposed an Al-based camera to monitor the
occupants in cabins and their behavior and also discussed
wave power-based autonomous vehicles to enhance the
facilities in various fields [158, 159]. In 2021, Malik et al.
[160] introduced a new concept vehicle as a service to re-
duce the CO, effect on the environment.

Regression algorithms are used in the cases of prediction.
These algorithms are used in automated vehicles to predict
and maintain a relationship between the image and its
position [161]. The output of usage of this algorithm is an
image, its place, and its presence. Some of the regression
algorithms used in self-driving vehicles are neural network
regression, decision forest regression, etc. In ADAS, the
data collected from all the sensors consists of different
datasets that require filtering data from raw or irrelevant
data. Hence, it forms a necessity for the classification of
data that uses pattern recognition. Category of data helps in
reducing the dataset. The SVM and HOG are widely used
for component analysis. A supervised model was designed
to avoid unwanted intervention while driving [162].
Trasnea et al. used the GrisSim to learn deep learning,
reinforcement learning, and genetic algorithms to maxi-
mize the speed [163].

This concept includes creating and automating mathe-
matical models and algorithms that can optimize the ability
to perform particular tasks. Machine learning proceeds from
examining survey models, operations and research, and
statistics and explores the data. The primary task of a ma-
chine learning algorithm in the autonomous vehicle is
frequently capturing and analyzing changes in the sur-
rounding environment. Major tasks are as follows:
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(i) Object Detection

Takumi [164] proposed multispectral images as
input information for object detection in traffic.
These are composed of RGB images, middle infrared
photos, and multilateral information. Multispectral
datasets are used for object detection in traffic. Liu
et al. [165] discussed that multispectral detection
pedestrian is required for the safety and existence of
certain autonomous driving features using ConvNet
fusion architectures, which combine two ConvNets
on different DNNs stages, which attain better
performance. Kuznetsova described a method for
real-time object detection using hybrid viola-jones
cascade with the conventional neural network [166].
Object detection is the most important technique
for autonomous vehicles. The nearby vehicles, traffic
lights, and signals should be detected and recog-
nized. Localization and classification is achieved by
object detection.

(ii) Object Identification/Recognition

Furqan et al. proposed a method for object iden-
tification naming decision tree and decision fusion
based recognition system which combines two
feature sets of RGB pixel values and nonlinear
points from each pixel from the dataset [167]. Lidar-
based viewpoints can detect the objects of any
transition, and tracking can be achieved more ef-
fectively [168]. This technique involves dividing,
partition making, clustering, and monitoring.
(iii) Object Classification

Yoshioka et al. presented object classification in the
real world based on ReadAda Algorithm [169].
LiDAR 3D point object clouds improve object

classification accuracy to 90%, distinguishing ob-
jects, persons, and electric poles on the path [170].

(iv) Object Localization

Localization is a crucial phenomenon for developing
autonomous vehicles, especially in metropolitan areas
[171]. A stereo camera is used to distinguish a long-
standing object from an electric pole in an envi-
ronment. The particle filter approach is used for lo-
calization for vigor and sensor fusion. Vision-based
localization would work more effectively in an object
localization process when the data are unable to re-
trieve from any hardware component in its failure,
and the data can be retrieved by a single camera [172].

(v) Prediction of Moment

An unexpected change in the surroundings, sign-
boards, traffic, shape of the lanes, and vehicle
condition can drastically impact the behavior sys-
tem of an autonomous vehicle [173]. The movement
prediction has a statistical behavior that is resolved
by various machine learning and deep learning
techniques. With the study of multiple autonomous
vehicles behavior concerning time and distance, the
position can be predicted [174].
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13.9. Deep Learning and Deep Reinforcement Learning
Methods for Autonomous Vehicles. Deep learning comes
under machine learning. In deep learning, inputs are taken
from images, text, and sound and segregated. These models
have more accuracy (sometimes more than humans) [175].
Models are trained by using multiple layers of input data.
Deep learning enables them to notice a stop sign or dif-
ferentiate a user from an electric pole. Conventional neural
network is a deep learning technique used for image clas-
sification and feature extraction from training models. This
technique can be used for automating the feature extraction
process and image recognition. Reinforcement learning is a
promising key in diving strategies, movement and action of
automated vehicles, and perception planning. The deep
learning neural network is more beneficial over the con-
ventional machine learning technique [175]. According to
Lee et al., deep learning techniques are used for autonomous
vehicles in following a lane without taking many lane de-
partures. These deep learning techniques are also used to set
specific angle positions for steering [176]. Reinforcement
learning methods are used for maintenance and controlling
various aspects of connected autonomous vehicles. In [177],
the authors proposed a hybrid approach of QEN and a TSK-
FIS to control the tuning parameters for fuzzy control. Gu
et al. have proposed a hybrid method deep reinforcement
algorithm combined with the feedback control technique to
improve the performance [156].

(i) Deep Reinforcement learning

Reinforcement learning is a technique in machine
learning that enables the generation of a series of
decisions. Deep Reinforcement learning further en-
hances reinforcement learning by using deep learning
and multilayered neural networks. Deep reinforce-
ment learning techniques are used in pipelined
structures to train the models of deep neural net-
works associated with autonomous vehicles [178].
These deep reinforcement techniques are used for
acquiring sensor amalgamation and spatial
characteristics.

Diplomatic decision-making is a critical aspect of
advanced driving systems that involves several
challenges, such as uncertainty in other drivers’ be-
haviors and the trade-off between safety and
smartness. To avoid this type of situation, we use deep
reinforcement learning techniques. An ultrasonic
sensor calculates the distance from a target object by
discharging ultrasonic sound waves and then con-
verts them to electronic signals. A vehicle with ul-
trasonic sensors can detect conditions in its area;
autonomous vehicles need to work on Big Data. An
ultrasonic sensor needs to get data from thousands of
connected vehicles, which is required for building
better algorithms [36].

Accessory, which is crucial for the Advanced Driving
Support System (ADAS), is a camera. It is used for vehicle
parking, lane departure warning, and detecting real-time
obstacles. This image has an array of pixels. Computer vision
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algorithms convert images by converting low-level to high-
level information images [36]. Unlike other sensors, Radar
has a remarkable ability to transmit signals irrespective of
poor weather conditions such as fog, rain, and snow and will
not hinder even during poor light. These have overall signal
perception from a vehicle. Radar has a better backup per-
formance added to lidar and camera. Radar’s output in-
cludes an object list containing speed, location, acceleration,
motion type, and boundary information.

Similar to WiFi, dedicated DSRC is wireless communi-
cation. DSRC has a high data transfer rate among vehicles.
DSRCis highly secured as well. These are used for both vehicles
to vehicle and vehicle-to-infrastructure communications. The
scope of DSRC is seen very high because of its low latency and
high and secure transmission. This type of communication can
be used to pay at parking slots and tolls, identify the curve
approach on lanes, alert the driver, and alert construction sites.

Challenges in DSRC and AV:

(i) DSRC spectrum or band should not affect the ve-
hicle to infrastructure performance.

(ii) Make sure that the driver responds accurately to the
vehicle to infrastructure warnings.

(iii) Maintaining and managing data security.
(iv) Labeling the variables related to potential respon-

sibility issues posed by vehicles to infrastructure
communication systems.

Precise estimation of accurate position in automated
vehicles becomes crucial in terms of driver safety and
comfort. It is more critical at junctions and intersections to
avoid accidents. Initially, GPS is used for this position
tracking, but it may have some issues such as signal loss and
3 to 4 meters of accuracy. To avoid this, the use of pose
sensors came into existence. Generally, in autonomous
vehicles, these sensors are embedded into the road infra-
structure system where the vehicle’s external orientation
(translation) is the output to be obtained. These sensors are
placed at intersections and junctions at some heights such as
surveillance cameras. According to Khayyam, an autono-
mous vehicle can have a right of 6 degrees of pose such as
position (x, y, z) and angles while rolling (8, Y). These AV
pose sensors are used to calculate GPS in the movement of
position receiver, acceleration parameters, and dynamic
vehicle movements.

13.10. IoT in Autonomous Vehicles. 10T can connect devices
to the Internet for sharing data. All the autonomous vehicles
are interconnected to send and receive data from applied
sensors and intelligent devices of surrounding pedestrians
and cyclists around, nearby traffic sensors, parking locations,
etc.

Following components are associated with IoT in au-
tonomous vehicles:

(1) Intelligent devices and sensors are the essential
components and collect multiple pieces of
information.
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(2) Mobile  networks and WiFi

technologies.

(3) All the data which are collected should be inter-
changed, stored, and processed.

(3G/4G/5G)

(4) Cloud services in AVs: here, the software as a service
is provided by the cloud.

(5) An advantage of IoT is intelligent control over ve-
hicles, GPS, information services, etc.

IoT will support autonomous vehicles and transform the
automobile industry, and in turn, the automobile industry
will give a considerable boost to IoT. IoT will create an edge
between auto manufacturers and software developers. IoT
not only will transform the automobile industry but will also
trigger a power struggle between automakers as the in-
cumbent players on one side and software developers on the
other side.

13.11. Recent Autonomous Vehicles Development Using Ar-
tificial Intelligence and Machine Learning.

(i) AV sensor technology 2020

LiDAR systems will become crucial for autonomous
vehicles. It works with visual sensors, ultrasonic
sensors, and Radar systems to communicate with
other vehicles. LIDAR sensors can continuously
watch 360 degrees, and it also provides accurate
depth information. One of the essential LiDAR
sensors is Velodyne-64HDL 64E. A LiDAR sensor
works by emitting the laser light, and it measures
how long it takes to reach the sensor. Sensors and
Radars were used before, but now the LIDARs came
into the picture in making the most efficient Au-
tomated Vehicles.

(ii) Vehicle-to-Infrastructure (V2I) Communication

In Vehicle-to-Infrastructure communication, data
are exchanged between the vehicles and road in-
frastructure by using wireless transfer. Road in-
frastructure such as lane markings and traffic signals
provide information to vehicles wirelessly and vice
versa. Road infrastructure will have a significant
impact on successful self-driving vehicles. V2I
communication becomes brighter by adopting
smart sensors in road signs, intelligent traffic sig-
naling systems, and intelligent speed control units to
endeavor smoother autonomous vehicle flow. New,
creative, and intelligent infrastructure is required to
stay in a digital ecosystem.

Few emerging technologies can be used to improve
road safety, and mobility is like

(1) Advanced road markings can be visible to both
humans and machines in any road condition.

(2) Smart signs also provide directional signage that
both humans and machines can see in any road
condition. Retro-reflective symbols offer more
accuracy in navigation and faster decision-
making for drivers as well as machines.
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(3) Wireless communication is also required for
driver safety, automation, and improved
mobility.

(iii) Advanced driver assistance systems (ADASs)

Driving assistance systems are evolving more and
more as per the need of the day. ADAS or advanced
driver assistance systems will enhance the driver
effectively and confidently in terms of safety.
Standard ADAS systems include front collision
warning, lane departure warning, adaptive cruise
control, parking assistance systems, and many
more. Blindspot detection systems, night vision
systems, and other features enable the drivers to
commute in a safer and better way for the future.
Likewise, Mercedes are very keen to adopt these
features to promote and to enhance safety for their
customers.

14. Conclusion and Future Directions

The scientific community now accepts autonomous vehicles
and autonomous driving as feasible solution due to ad-
vancement in Al. With artificial intelligence, autonomous
vehicles and driving systems may make a choice that propels
the industry into a new era of rapid development. Despite
this, artificial intelligence has significant limitations, limiting
the growth of autonomous driving. This work has conducted
a comprehensive survey over artificial intelligence in au-
tonomous vehicles, systems, and driving experiences. In
observations, it is found that there is a lack of safety stan-
dards for autonomous systems, and Al is an important
concept while designing the safety standards for futuristic
autonomous systems. Furthermore, a comparative analysis
of various studies on autonomous systems shows that in-
tegrating two or more advanced technologies (blockchain,
IoT, cloud computing, fog computing, edge computing, and
artificial intelligence) is required to make autonomous
systems a reality. Here, the focus is drawn on how artificial
intelligence monitors the vehicle’s activities and movements.
Intelligent tools are necessary for autonomous vehicle design
and development. In this work, various latest release of tools
and frameworks are analyzed in context of design techniques
and programming languages used. The operational testing is
essential for effective functionality of AVs. Thus, various
testing techniques employed by organizations and re-
searchers are highlighted in this work. The limitations of
existing testing techniques are also discussed.

14.1. Future Directions. Various important future research
directions in this field are briefly explained as follows
[179-184]:

(i) An intentional attack on the AI system that in-
terferes with its operation may put autonomous
vehicles in danger of being destroyed. Attacks
against stop signs, such as placing stickers on them
to make them more challenging to identify, are two
examples of such attacks. As a result of these
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modifications, artificial intelligence may errone-
ously detect objects, resulting in the autonomous
vehicle behaving in a way that puts humans in
danger. Thus, there is a need to explore the RFID or
IoT-based solutions that use artificial intelligence to
solve these challenges.

(ii) It is observed that self-driving cars will revolu-

tionize our lives. There is a need that legislators
must create legislation that benefits the country’s
economy and socially. Studies examine AVs’ po-
tential to become a “killer app” with dramatic
consequences. AVs will have substantial impacts
over time, even if they are still in development.
Thus, there is a need to study the safety precautions
before accepting them in real environments.

(iii) Deep neural networks (DNNs) enable self-driving

cars to learn how to move around their sur-
roundings independently. Human brains are sim-
ilar to DNNs because of this: both learn via trial and
error. There is no hard and fast rule regarding
autonomous driving and how many DNNs are
required. Thus, there is a need to conduct an in-
depth study in the future.

(iv) A real-autonomous driving on-road environment

requires millions of interactions between vehicles,
people, and devices. To handle such an extensive
infrastructure, there is a need for a high-end in-
frastructure which may be costly. Thus, there is a
need to study how artificial intelligence can effi-
ciently utilize the infrastructure for smooth au-
tonomous experiences.

(v) In future, more intelligent tools and software

should be developed to implement better path
planning and object detection in autonomous ve-
hicles. Data communication should be of more
velocity as real-time decisions are to be made.

(vi) In autonomous systems, the machine learning

system monitors machine activity to predict
problems. The solution reduces unplanned down-
time costs, extends asset life, and increases oper-
ational efficiency. There is a need to identify the best
machine learning algorithms and approaches that
monitor a machine or its activities. This task can be
explored in the future.

(vii) Early diagnosis of vasculature via fundus imaging

may be able to prevent retinopathies such as
glaucoma, hypertension, and diabetes, among
others, from developing [185-187]. The overall
purpose of this study is to create a new way for
combining the benefits of old template-matching
techniques with those of more current deep
learning methods in order to achieve greater effi-
ciency. A U-shaped fully connected convolutional
neural network is used to train the segmentation of
vessels and backgrounds in pixels of images (U-
net). Likewise, other advanced technologies such as
blockchain and quantum can be explored for AVs
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[188, 189]. The wireless sensor network is used in
autonomous vehicles for information communi-
cation [190-193].

Abbreviations

Al Artificial intelligence

AUV: Automated underwater vehicles

ASIL: Automotive safety integrity levels

AEV: Autonomous electric vehicle

AV: Autonomous vehicle

AVSN:  Autonomous vehicle social networks
CAV: Connected autonomous vehicle
DSRC:  Dedicated short-range communications

DL: Deep learning

DNN: Deep neural network

DARPA: Defense advanced research projects agency
EV: Electric vehicle

EVSE:

Electric vehicle supply equipment
ELROB: European land-robot
FPGA:  Field programmable gate array
GNS: Global navigation satellite system
GPS: Global positioning system
GORE:  Goal-oriented requirements engineering
GPU: Graphics processing unit
GHE: Greenhouse gas emissions
HARA:  Hazard analysis and risk assessment
HAVEit: Heavily automated vehicles for intelligent
transport
HOG: Histogram of gradient descents
IEEE: Institute of electrical and electronics engineers
IC: Integrated circuit
IDE: Integrated development environment
IA: Intelligent Automation
ISO: International organization for standardization
IoT: Internet of things
IoV: Internet of vehicle
JESS: Java expert system shell
LMD: Last-mile delivery system
LiDAR: Light detection and ranging

ML: Machine learning

MMI: Man machine interface
MBUX: Mercedes benz user experience
NLP: Natural language processing

QEN: Q estimator network

QoL: Quality of life

QoS: Quality of services

SAE: Society of automotive engineers

SDN: Software-defined network

SLAM:  Spatiotemporal localization and mapping
SVM: Support vector machines

STPA-  Systems theoretic process analysis

sec:

TSK-FIS: Takagi-sugeno-type fuzzy inference system
TPU: Tensor processing unit

V2X: Vehicle-to-everything

V2I: Vehicle-to-infrastructure
VTOL:  Vertical take-off and landing
VUCA: Volatile, uncertain, complex, ambiguous.
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