Hindawi

Computational Intelligence and Neuroscience
Volume 2022, Article ID 3411881, 14 pages
https://doi.org/10.1155/2022/3411881

Research Article

@ Hindawi

Qualitative Analysis of Text Summarization Techniques and Its

Applications in Health Domain

Divakar Yadav®,' Naman Lalit ,lRiyaKaushik ,lYogendraSingh ,YMohit®,! Dinesh ©®,’
Arun Kr. Yadav(®,' Kishor V. Bhadane (,2 Adarsh Kumar ©®,? and Baseem Khan ®*

'Department of Computer Science and Engineering, NIT Hamirpur (HP), Hamirpur, India

2Amrutvahini College of Engineering Sangamner, Ghulewadi, Maharashtra, India

3Department of Systemics, School of Computer Sciences, UPES, Dehradun, India

*Department of Electrical and Computer Engineering, Institute of Technology, Hawassa University, Hawassa, Ethiopia

Correspondence should be addressed to Baseem Khan; baseem.khan04@gmail.com

Received 21 October 2021; Accepted 20 January 2022; Published 9 February 2022

Academic Editor: Lerina Aversano

Copyright © 2022 Divakar Yadav et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For the better utilization of the enormous amount of data available to us on the Internet and in different archives, summarization
is a valuable method. Manual summarization by experts is an almost impossible and time-consuming activity. People could not
access, read, or use such a big pile of information for their needs. Therefore, summary generation is essential and beneficial in the
current scenario. This paper presents an efficient qualitative analysis of the different algorithms used for text summarization. We
implemented five different algorithms, namely, term frequency-inverse document frequency (TF-IDF), LexRank, TextRank,
BertSum, and PEGASUS, for a summary generation. These algorithms are chosen based on various factors. After reviewing the
state-of-the-art literature, it generates good summaries results. The performance of these algorithms is compared on two different
datasets, i.e., Reddit-TIFU and MultiNews, and their results are measured using Recall-Oriented Understudy for Gisting
Evaluation (ROUGE) measure to perform analysis to decide the best algorithm among these and generate the summary. After
performing a qualitative analysis of the above algorithms, we observe that for both the datasets, i.e., Reddit-TIFU and MultiNews,
PEGASUS had the best average F-score for abstractive text summarization and TextRank algorithms for extractive text sum-

marization, with a better average F-score.

1. Introduction

Summarizing textual information requires understanding
and analyzing the linguistic, conceptual, and semantic at-
tributes of the given information. In addition, a summary
generated should succeed in incorporating the essential
details and the main ideas of the given text. Extractive
summarization techniques can extensively analyze the given
text semantically, i.e., on sentences, words, keywords, etc.,
identified by the algorithm. Extractive summarization
techniques [1, 2] are also computationally more feasible to
implement since they require fewer resources, computation
power, and time to assess and generate a summary since they
are statistically oriented. However, the techniques generate a
summary by identifying the imperative sentences. The

keywords are identified in a given text based on the fre-
quency of their occurrences. The technique might not ef-
ficiently incorporate the information given or might leave
out some crucial details [3].

On the other hand, abstractive summarization tech-
niques [4] analyze the data using a natural language pro-
cessing approach and generate a summary by reforming the
given information concisely around the vital idea of the
information. A summary generated by abstractive sum-
marization methods is more comparable to a human-gen-
erated summary, a criterion that a summary generated by
extractive summarization techniques (EST) might not sat-
isfy. Abstractive summarization methods require efficient
implementation of various machine learning techniques
with large datasets with good variety and conditional

mailto:baseem.khan04@gmail.com
https://orcid.org/0000-0001-6051-479X
https://orcid.org/0000-0002-2375-6711
https://orcid.org/0000-0003-3637-5413
https://orcid.org/0000-0001-7387-8357
https://orcid.org/0000-0001-7899-0532
https://orcid.org/0000-0002-9952-1433
https://orcid.org/0000-0001-9774-7917
https://orcid.org/0000-0002-5010-7434
https://orcid.org/0000-0003-2919-6302
https://orcid.org/0000-0002-0562-0933
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3411881

aspects. Since abstractive summarization techniques require
the implementation of machine learning algorithms, it is
computationally expensive and requires time to be imple-
mented efficiently. The cost of implementation grows ex-
ponentially with the size of data being summarized.
Abstractive techniques can be understood as the way
humans analyze any textual document. It selects words that

Computational Intelligence and Neuroscience

are semantically appropriate for the content. The summary
generated might include words that were not even included
in the given data since abstractive summarization deciphers
and examines the content using natural language processing
techniques and creates concise data that constitutes the most
basic idea and key contents of the textual data given for
summarization.

Information record — get setting — semantics — make own rundown. (1)

Extractive summarization techniques focus on sum-
marizing a textual document by selecting words or sentences
that are important to the context or appear more frequently
[5]. The extractive summarization techniques score or assign
loads to words or sentences and use pieces of significance or

equivalent for a summary generation. Various methods and
mathematical calculations are used to assign loads or scores
for the words/sentences, which are further used to position
the sentences/words according to their significance and
comparability [6].

Information record — sentences closeness — score sentences — selection of sentences with higher significance. ~ (2)

The abstractive strategies require a proficient under-
standing of the textual data as compared to the extractive
strategies. The simplistic statistical and mathematical ap-
proach of extractive strategies is often more efficient and
successful at summarization than the complex and so-
phisticated approach of abstractive summarization tech-
niques (AST), which considers several factors like inference
and attributes, semantic presentation, language, etc., which
are more complex than statistic driven ideologies, for ex-
ample, sentence/word extraction. We have used the ROUGE
metric to evaluate and compare the performance of different
methods and techniques in this work.

The following are the main contributions in this article:

(i) Five different algorithms for text summarization:
TF-IDF, LexRank, TextRank, BertSum, and PEGA-
SUS have been implemented on two different
datasets: Reddit-TIFU and MultiNews

(ii) An exhaustive, detailed qualitative analysis is per-
formed to evaluate the algorithms on three ROUGH
parameters, i.e., Rough-1, Rough-2, and Rough-L,
and finally, F-score is computed and found prom-
ising results for EST and AST, respectively

The work in this article is arranged in sections as follows.
The next section discusses the related works for ESTs and
ASTs. Section 3 discusses the methodology. Further, Section
4 discusses the datasets and implementation. The result
analysis is discussed in Section 5, followed by a conclusion
and references.

2. Related Works

Various researches have been done to analyze different
summarization algorithms, and hence, several research ar-
ticles for the purpose mentioned above have been published.

We aimed to gather optimal knowledge from research on
summarization techniques [7] and efficiently implement and
optimize our models for assessing its performance and
concluding with concrete results. We learned various
summarization techniques for single and multidocuments
[8]. We read about some of the most widely used methods
such as frequency-driven methods, topic representation
approaches, and graph-based and machine learning tech-
niques [9] through this paper.

A thorough study provided insight into recent trends
and advancements in automatic summarization techniques
[10] that describe the state of the art in this research area.
Generally, there are two types of summarization techniques.
Here is some previous research work in the following fields.

2.1. Extractive Summarization. Extractive summarization, at
the most basic level, can be approached by using the sentence
scoring technique that obtains the text’s keyword [11]. It is
done by analyzing and filtering the words which are used
most frequently in the text. The sentences with a high fre-
quency of these words are used for generating a summary of
the original text by using the sentences with high scores in
decreasing order of scores [5]. For better performance and
efficiency, graph-based methods were introduced, making
the models capable of considering more complex attributes
of the textual information and presenting concise infor-
mation with better accuracy.

In graph-based approaches, the words are considered
nodes, and their relation with other words is based on their
frequency, which is depicted as edges. The edges are
weighted and are analyzed for choosing the query words for
generating a summary [12]. Several algorithms like Pag-
eRank, TextRank, TexRank, etc., can be used for efficient text
summarization techniques [13]. A bipartite graph is created
to represent sentences and topics separately. Scores are

Computational Intelligence and Neuroscience

assigned to each sentence, and sentences in decreasing scores
are added to the summary. Several techniques like Lev-
enshtein distance, semantic similarity, and cosine similarity
are used for determining the relation between sentences and
words, which then pave the way for an efficient summary
generation [14].

We have implemented, executed, and assessed four
different extractive summarization techniques [15] in this
work, namely, TF-IDF (term frequency-inverse document
frequency) summarization algorithm, LexRank algorithm,
TextRank algorithm, BertSum algorithm, and PEGASUS
algorithm. The task required us to comprehend the fun-
damentals and complexities of each algorithm. Below are
brief explanations about these algorithms.

In the TF-IDF algorithm, large texts are converted into
sentences and then weighted term frequency, and inverse
sentence frequency is calculated where the sentence fre-
quency is defined as the number of sentences of the doc-
ument, which involve these terms [16]. The vectors of the
sentences are calculated and compared with the other
sentences and are then scored. The product of TF and IDF
calculates the TF-IDF value of a word/term, where TF (term
frequency) is defined as the number of times a word occurs
in a document and IDF is inverse document frequency [8].
The sentences with the highest score are considered the
conclusive sentences for summary [17]. This paper provides
more detailed information about the application of the TF-
IDF algorithm on multidocument extractive text
summarization.

LexRank algorithm is an unsupervised graph-based
method for automatic text summarization (ATS) [18].
Graph method is used to compute the score of sentences.
LexRank is used for computing sentence importance based
on the concept of eigenvector centrality in a graph repre-
sentation of sentences. In this algorithm, we have a con-
nectivity matrix based on intrasentence cosine similarity,
used as the adjacency matrix of the graph representation of
sentences [19]. This sentence extraction majorly revolves
around the set of sentences with the same intent; ie., a
centroid sentence is selected, which works as the mean for all
other sentences in the document. Then, the sentences are
ranked according to their similarities.

TextRank algorithm, for automatic text summarization,
is an unsupervised graph-based ranking approach. The
scoring of sentences is performed using the graph method,
where each vertex is scored based on the linking of those
tokens, which are considered vertex in the graph [20].
TextRank can be used for keyword extraction and sentence
extraction. Here, we have used TextRank as sentence ex-
traction with a higher score. An important aspect of Tex-
tRank is that it does not require deep linguistic knowledge,
nor domain or language-specific annotated corpora, which
makes it highly portable to other domains, genres, or
language.

BertSum algorithm assigns scores to each sentence that
represents how much value that sentence adds to the overall
document [21]. Scores of each node or vertex are decided by
either a “voting” or “recommendation” system, where each
node or vertex votes for all others. The importance of a node/

vertex is decided based on the votes received. The value of
each vote also depends on the importance of the node
casting it. The sentences with the highest scores are then
collected and rearranged to give the overall summary of the
article.

A quantitative and qualitative assessment of 15 algo-
rithms has been performed by Ferreira et al. [22] for sen-
tence scoring. They evaluated these algorithms in three
datasets: convolutional neural network (CNN) news dataset,
Blog summarization dataset, and SUMMAC dataset. In the
paper [23], the authors proposed extractive text summari-
zation of Hindi novels and stories. They create a good corpus
of the dataset of Hindi novel and perform summarization
with standard evaluation parameters. Also, they evaluate the
proposed model on slandered English dataset and concluded
that prosed model outperforms as compared to state of art
methods.

An extractive multidocument text summarization using
a quantum-inspired genetic algorithm is proposed in the
paper [24]. They proposed a quantum-inspiring genetic
algorithm to summarize silent sentences of web-based
multidocuments. The proposed model is evaluated on
standard benchmark datasets DUC 2005 and DUC 2007.
They concluded that the proposed model outperforms as
compared to the state-of-the-art methods. Kumar et al. [25]
presented an improvised extractive approach based on a
thematic approach for summarization of Hindi text
documents.

In the paper [26], the authors proposed a new dataset
“SIGIR2018” for extractive text summarization. They eval-
uated the dataset on standard matrices and compare the
results of other publicly available datasets like DUC 2005
and DUC 2007.

2.2. Abstractive Summarization. On the other hand, ab-
stractive summarization does not focus on the semantic
representation of data and utilizes techniques of natural
language processing (NLP) and linguistic approach to
concise the given information [14]. Summaries generated by
abstractive summarization might not be composed of
original sentences or words and might have been replaced by
morphed sentences and new words. Summaries generated by
abstractive summarization are more comparable to human-
generated summaries [27]. They succeed in better com-
prehension of the context and idea of the information;
however, since the algorithms require training of models and
implementation of NLP models, they require high com-
putational power and more resources than extractive
summarization techniques.

PEGASUS algorithm is an abstractive summarization
algorithm, which uses a sequence-to-sequence framework
using encoder-decoder architectures based on recurrent
neural network (RNNs) [28]. It uses pretrained sequence-to-
sequence models with sentences masked and then passed to
the encoder-decoder [29]. This paper gives more detailed
info about sequence-to-sequence models. It is computa-
tionally expensive and needs a lot of time and resources for
implementation. The masked information can be sentences,

words or collocations, etc. A study into this domain gave
insights into the abstractive text summarization algorithm,
which can generate a summary of texts based on the concept
of extracted gap sentences. Pretraining them on different
models leads to more accurate results, as the model can
predict the missing sentences and then is used for the
summarization of lengthy text.

An abstractive text summarization using a hieratical
human-like deep neural network is proposed in the paper
[30]. The authors’ main objective is to generate abstractive
text summarization as much similar to a human-generated
summary. The proposed model is based on a knowledge-
aware hierarchical attention module, a multitask learning
module, and a dual discriminator generative adversarial
network. They compare the results on a standard dataset
with standard evaluation matrices.

These were some of the algorithms whose literature work
is mentioned above, and now in the next section, we will be
explaining the algorithms in more detail, their imple-
mentation, and their detailed analysis by comparing their
results from the various datasets used for text
summarization.

3. Methodology

Summarization processes in extractive and abstractive-based
algorithms can be tackled by focusing on semantic attributes
and semantic relationships among the constituents of the
given information. These relationships can be established by
considering various aspects, e.g., by using different algo-
rithms like K-means clustering, using scoring systems for
words and sentences, using voting systems among words
and sentences, through machine learning.

As it is known that there are many algorithms available
for text summarization, each one of them has its charac-
teristics and performs better on different datasets. Mainly, all
the algorithms are classified into various categories based on
their implementation.

The extractive-based algorithms are classified into three
types mainly based on the different types of learning as
shown in Figure 1 [31]. It provides detailed information
about all the techniques used for selecting the best extractive
algorithm based on various attributes.

Regarding abstractive-based text summarization, the
algorithms are categorized into two main types of sum-
marization algorithms based on approaches, i.e., semantic-
based approach and structured-based approach, as shown in
Figure 2. This article provides a deep understanding of these
approaches and helps to identify algorithms suitable for text
summarization.

All the algorithms focus on determining meaningful
sentences, keywords, and words for generating the sum-
mary, which concisely conveys vital information. After
gathering information about the performance of different
algorithms, we have selected five algorithms, which perform
better than other algorithms and are extensive in delivering
better results. In particular, PEGASUS (abstractive-based
algorithm) shows the state-of-the-art performance among
all the other abstractive-based algorithms [28].

Computational Intelligence and Neuroscience

As discussed earlier in Section 1, the algorithms used in
this paper are TF-IDF, LexRank, TextRank, BertSum, and
PEGASUS that have been developed around the concepts
mentioned earlier. TF-IDF, LexRank, and TextRank algo-
rithms work by calculating word or sentence scores through
their system, whereas BertSum and PEGASUS use a voting
system among words or sentences, whichever is more op-
timal, and use machine learning and RNN techniques, re-
spectively. The algorithms have been discussed thoroughly,
along with their results and conclusions in the following
sections.

3.1. Term Frequency Algorithm. Large messages are first
changed over into sentences, and afterward-weighted term
frequency and inverse document frequency are determined
where the sentence recurrence is characterized as the
number of times these terms have appeared in the sentences
of the archive [8]. The vectors of the sentences are deter-
mined, contrasted, and different sentences and are then
scored.

The TF-IDF estimation of a word is determined by the
result of TF (term frequency) and IDF (inverse document
frequency), where TF (term frequency) is defined as the
occasions a term happens in a record [32]. The sentences
with high weight values are selected to be the definitive
sentences for synopsis. In this technique, each word is given
avalue between 0 and 1, where the closer the value is to 1, the
higher will be its priority. Moreover, each word is known as a
term, and it helps in outlining the important terms in the
document, thereby generating a better summary.

In contrast to different calculations requiring man-made
consciousness and Al, this programmed rundown exploration
need not bother with any AI because of the utilization of li-
braries currently available to us, for example, NLTK and
BeautifulSoup. Utilization of the current libraries helps us focus
on the most proficient method to ascertain TF-IDF and the
content. The program is isolated into three primary capacities,
which are preprocessing, highlight extraction, and synopsis.

We have composed the calculation in Python to produce
the rundown utilizing this calculation. Figure 3 shows the
flow chart of TF-IDF technique implementation.

Preprocessing capacity measures the archive with NLTK
capacities like grammatical feature (POS) tagger, tokeni-
zation, stemming, and stop words [33]. After the archive is
inputted into the program, the preprocessing capacity parts
the content into a rundown of terms utilizing tokenization
capacities. The emotional development of the Internet has
led to the overpowering of individuals by the enormous
measure of online textual data and reports [34]. This
growing accessibility of records has demanded thorough
exploration in the programmed text summary or outline. An
outline is defined as “a book that is created from at least one
message, that conveys significant data in the given text (s),
and that is shorter or equivalent to half of the given text(s)
and normally, altogether not as much as that.” For instance,
web crawlers produce scraps as the analysis of the given text.
Different models incorporate news sites, which produce
consolidated portrayals of information themes, usually as

Computational Intelligence and Neuroscience 5

Classification of Automatic
Text Summarization (ATS)
Techniques

A 4 v 4 A

A4 A\ 4

Based on Based on Based on Based on
Summarization Summary Summary Summarization
Algorithms Content types Domain

Headline

Domain less

Supervised Suggestive

Based on no. of Based on Based on Based on
Input Summarization Output Summary
documents Methods Summary Language
)
Single o| Extractive Generic ()
Document g ATS _p{Monolingual
-
- J
tio] Abstractive
Multiple Iq ATS il
Document > - Multilingual
— - J
)
q —»(Cross lingual
»| Hybrid ATS
—
- J

Domain
Specific

Sentence
Level

v

. Instructive
Unsupervised

Highlight

Full
Summary

Figure 1: Classifications of automatic text summarization methods.

E Abstractive Summarization }

Approaches using prior
knowledge
(Structure based Approach)

Approaches using NLP
Generation
(Semantic based Approach)

FIGURE 2: Abstractive text summarization techniques.

features to encourage examining or information extractive
ideology or techniques.

We as humans summarize any given data by first reading
it from top to bottom to comprehend the context and then
composing our summary by featuring the main idea or
concerns. Since machines cannot read or understand like
humans, it has made programmed text synopsis extremely
troublesome. Programmed text rundowns have been an area
of interest since the 1950s. A significant amount of attention
to this field was due to the summarization of logical archives.
Luhn [35] set the foundation stone for programmed sum-
marization by proposing the summarization technique by
considering sentences from content utilization high-
lights—for example, term and sentence recurrence. The
technique required assigning weight to the sentences of the
given text to determine words with high recur frequency and
ignoring the common words with high recurring frequency.

From the start, we standardize the reports, and the
content is changed over into lowercase, so the two words, for
example, Hello and hi, are not viewed as of particular. At that

point, the cycle of tokenization happens where the sections
are changed over into singular sentences. After this, the
sentences are further tokenized and changed over into a
rundown of words. Presently, every word in the rundown is
arranged utilizing the POS tagger work to have no super-
fluous words. The words are characterized into various
kinds, for example, DET (determiners), CONJ (conjunc-
tions), PRT (particles or other capacity words), NUM
(cardinal numbers), X (other: unfamiliar words, errors,
shortenings), “.” (accentuation), VERB (action words),
NOUN (things), PRON (pronouns), AD]J (modifiers), ADV
(intensifiers), and ADP (adpositions). All the stop words and
clitics are eliminated so that there are no ambiguities. At that
point, standardization happens of the words where fastens
are eliminated to ensure that the outcome is the known
world in the word reference.

The TF-IDF estimation of everything and the action
word would then be determined from the preprocessed
rundown of words. The calculations of TF-IDF can be
performed using equation (5).

6 Computational Intelligence and Neuroscience

Load text
Document

Text processing (Stop words Removal, Clitics,
Removal, Stemming & Word tagging)

|

Calculate each sentence
Score

:

Summary Generation

FiGgure 3: TF-IDF technique.

Total appearance of the term ¢/ in a document

TE(t,d) = , 3
(t, d) Total terms in the document 1d/ ()
Total number of documents in a document set
I DF(t) = log (4)
Document Frequency of the term ¢/
TF-1DF(t,d) =TFE I DF . (5)

The estimation of TF-IDF goes from zero to one with
ten-digit accuracy. After being determined, these words are
arranged in sliding requests by their worth. At that point, it is
incorporated into the new word reference of words, and they
are worth it. This arrangement is imperative to break down
the position of TF-IDF esteem from the entirety of the words
to check the yield rundown. In the wake of knowing the TF-
IDF estimation of each word, it can compute the significance
estimation of a sentence. The significance estimation is an
amount of the estimation of each thing and action word in
the sentence. Each sentence in the archive is arranged in a
diving request.

Finally, five sentences with the highest TF-IDF esteem
are picked. The number of sentences in the last synopsis may
change contingent upon the pressured pace of the program

picked by the client. As TF-IDF is an extraction technique,
the sentences in the outline are equivalent to the first report.
These picked last sentences are arranged as per their ap-
pearance in the first archive. For the multirecord outline, the
sentences are arranged comparatively with a single report
synopsis [36]. The thing that matters is that it begins from
the archive, which has the minimal absolute of TF-IDF. The
TF-IDF algorithm works by this means.

3.2. LexRank Algorithm. LexRank is an extractive technique
used for text synopsis. LexRank method for text summa-
rization where another baby method used is the PageRank
method with a sibling TextRank. This learning technique is
based on the unsupervised graph. The scoring of sentences is

Computational Intelligence and Neuroscience

finished utilizing the diagram strategy. LexRank is utilized
for figuring sentence significance dependent on the idea of
eigenvector centrality in a chart portrayal of sentences.
Under this algorithm, if one sentence is similar to many of
the other sentences, it is assumed that it is more important in
the document.

This model has a network framework dependent on
intrasentence cosine likeness, which is utilized as the con-
tinuous grid of the diagram portrayal of sentences [18]. This
sentence extraction significantly rotates around the ar-
rangement of sentences with the same plan. For example, a
centroid sentence is chosen, filling in the mean for any
remaining sentences in the record. Later, the sentences are
arranged as per their similarities.

3.2.1. Components of LexRank Algorithm. LexRank algo-
rithm consists of various components, which are discussed
as follows:

i df — modified — cosine(x, y) =

(a) Sentences and cosine similarity scores are repre-
sented by the graph’s node and edges, respectively, as
shown in Figure 4

Graphical Approach

(i) It is based on eigenvector centrality
(ii) Usually, sentences are placed at the end of
vertices of the graphs
(iii) We can calculate the weight of the edges using
the cosine similarity metric

Concerning this graph, S; are the sentences at the
vertices, respectively, and W j are weights at the end
of the edges

(b) Nodes: TF-IDF vector over each term in the sentence
is computed in equations (3) and (4), respectively

(c) Edges: the similarity between two sentences is then
defined by the cosine between two corresponding
vectors, as shown in

Zwex,ytfw,xtfw,y (l df)2

(6)

wheret f, ; is the number of occurrences of the word
w in the sentence s and idf is the inverse document
frequency, defined in equation (4).

For generating the summary, we used the “Sumy” library
in Python, which uses the LexRank algorithm for generating
the summaries of lengthy text.

Methodology:
The prominent approach is an unsupervised graph.

Advantages:

(i) Maintains redundancy
(ii) Improves coherency

3.3. TextRank Algorithm. TextRank is used for text pre-
processing to determine the keywords and relevant sen-
tences in a given text. It is an unsupervised graph-based
ranking model. Then, those sentences are used to generate
the text summary. Since the TextRank algorithm is graph-
based, the significance of a vertex is determined based on the
complete information provided by the graph. The TextRank
algorithm makes this decision based on “votes” or “rec-
ommendations” of a vertex. All the vertices except for the
one being accounted for will vote for a vertex [20]. The
importance or value of a vertex is calculated based on the
votes received by the vertex. Also, each vertex’s vote has its
importance calculated by considering the value of the vertex,
which is casting a vote. Once all vertices are scored or valued,
the vertices with maximum scores are further chosen as
important keywords. These keywords are used to determine
the key context of the text and the sentences, which should
be added to the summary generated.

\/inex(tfxi,x exd dfxx)z \/Z}’ie}’(tf)’v}’ €)’i df)’i)z

For using the TextRank algorithm to summarize any
textual information, the text must first be transformed into a
graph. Various attributes of textual information can be used
as vertices of a graph and can be further processed. Such
attributes may include words, collocations, and entire
sentences. Once the textual information has been trans-
formed into a graph, the vertices are scored based on the
above voting system.

The formula used to calculate the score of a vertex is
explained as follows.

Formally, let a directed graph with the set of vertices V
and set of edges E be represented as G=(V, E), where E is a
subset of VxV. Let In(V;) be the set of vertices for a given
vertex V; that point to it, and let Out(V;) be the set of vertices
to which vertex V; points to. The score of a vertex is defined
using equation (7) [20].

S(V)=(-d)y+dx Y 1)|S(Vj)- (7)

jeln (Vi) iOut(V]

Here, d is the damping factor whose value lies between 0
and 1. It integrates the probability of jumping from a given
vertex to another vertex into the graph.

It is an iterative algorithm. Initially, a random value is
assigned to each node. Several iterations of the algorithm are
performed till convergence below a set threshold. After
executing the algorithm thoroughly, each node has a score
associated with them, which determines a node’s
importance.

In the TextRank algorithm, the initial values given to a
node will not affect the results or conclusions of the algo-
rithm. However, the number of iterations of the algorithm
might affect the results.

Computational Intelligence and Neuroscience

SZ
1

W
S

S
O
S
6

3
WZ
\i
Wll 12
Wy ®
W6

FIGURE 4: Unsupervised graph [18].

Although the TextRank algorithm is used for directed
graphs, it can be used on an undirected graph as well in
which the out-degree and in-degree of a vertex are equiv-
alent. For loosely connected graphs, undirected graphs have
more gradual convergence when the number of edges is
proportional to the number of vertices.

3.4. BertSum Algorithm. Bertram is an abstractive sum-
marization algorithm based on BERT (Bidirectional Encoder
Representations from Transformers), an unsupervised
learning architecture built on top of the Transformer ar-
chitecture. The BERT architecture has successfully per-
formed more efficiently for a wide range of tasks than the
existing models in the NLP space [21].

The BERT architecture was built by Google, along with
several published papers and pretrained models that can be
used for transfer learning in many domains and various
tasks.

BertSum algorithm generates sentence embeddings by
using the tokenized textual information given. These sen-
tence embeddings can then be incorporated with the
K-means algorithm to calculate the significance of each
sentence embedding. The significance of each sentence
embedding is determined by calculating its distance from the
centroid. Since the algorithm generates sentence embed-
dings and these sentences can be clustered with a size of k,
the size of the summary generated can be controlled by
managing the value of k. Previous frameworks and algo-
rithms of abstractive algorithms have not been able to
achieve this.

BertSum requires the textual information to be toke-
nized, i.e., removing too small or too large sentences or
sentences or words that require more context to be included
in the summary. Several tokenization models then can be
used to produce tokenized text. If sentences that fall into the
criteria as mentioned earlier were not removed from the
data, then it was observed that these sentences/words/pieces
of information were rarely used in generating the summary;
also, their presence affected the centroid of the data and the

algorithm produced different results, and its performance
deteriorated.

K-means algorithm is implemented on the tokenized
data to select tokens of more importance and value. The
importance of each token is calculated based on each token’s
distance from the centroid. The algorithm generates the
summary based on determined keywords and important
sentences. The summary size can be controlled by changing
the value of k or the size of the cluster.

The BertSum algorithm has superior performance over
all other NLP algorithms. The BertSum algorithm has
specific pretraining objectives, it randomly masks 10% or
15% of the input, and the algorithm has to predict the
masked word or sentence. In another step, the algorithm
takes two sentences, namely, input sentence and candidate
sentence. The algorithm has to foretell whether the input
sentence correctly comprehends the candidate sentence. The
pretraining of the BertSum algorithm is computationally
expensive and might take days to pretrain the model even
with impressive computational power and resources. Google
has launched two pretrained models of the BertSum algo-
rithm for more straightforward implementation by users,
more variety of use cases, and better analysis and testing.

3.5. PEGASUS Algorithm. Pretraining with Extracted Gap
sentences for Abstractive Summarization (PEGASUS) is an
abstractive summarization algorithm that uses the sequence-
to-sequence framework, which uses RNNs, based on en-
coder-decoder architectures. It uses pretrained sequence-to-
sequence models with sentences masked and then passed to
the encoder-decoder as shown in Figure 5.

The objective is based on predicting missing sentences
from the article [28]. Google AI introduces a new state-of-
the-art algorithm for doing abstractive summarization. The
main contribution of the paper is the introduction of a new
pretraining objective for the summarization task. The au-
thors test their transformer-based seq-to-seq summarization
model on 12 relevant datasets. The new pretraining objective
leads to improved performance over baselines trained

Computational Intelligence and Neuroscience

Masked Tokens

Mythical Names

Transformer Encoder

Target Text

It is pure white, <eos>

Transformer Decoder

Pegasus is [Mask 2] [Mask 1] It [Mask 2] the model

<s> It is pure white

/

T~

Pegasus is It is pure white

It names the model

F1GURE 5: Transformer encoder-decoder model [28].

directly on downstream summarization datasets and over
alternative pretraining objectives.

So, they have used a seq-to-seq transformer encoder-
decoder model to generate a new algorithm known as “Gap
Sentences;” here, sentences of significance are selected and
masked from the input document. These sentences are al-
together used to generate a single sequence from the
remaining sentences, and this can be considered following
the ideology of extractive technologies.

Let us suppose that we have a document and then use
different strategies such as

Random Method: randomly picking “m” sentences
Lead Method: selecting the first “m” sentences

Principal Method: selecting top “m” sentences based on
their significance in the document (i.e., picking those
sentences that maximally overlap with the document as
a whole based on ROUGE-1 metric)

After selecting the best strategy, the sentences are passed
in the transformer, where some of them are masked, and a
gap is created between them and is fed in the system,
expecting that the model will train itself internally and
generate the desired output that we ask for.

They have used multiple datasets to pretrain their
model like C4, the Colossal, and Clean version of
Common crawl, which consisted of 350 M pages, 750 GB
of data. This model is run on downstream summarization
datasets (12 in number) of different domains (news,
science, stories, instructions, emails, etc.). Moreover, the
results are prepared and generated in batches, which can
be used for evaluation.

4. Datasets Used and Implementation

In this section, we mainly discuss the datasets used in our
work and then compare their results using ROUGE
metrics.

4.1. Datasets. The sort of data it gets as input primarily
determines any algorithm’s performance. Some algorithms
perform and give better results for one type but not for the
other one. For this paper, we picked two of the most popular
datasets from the available datasets on Tensor flow in the
category of text summarization. The datasets are MultiNews
Dataset [37] and Reddit-TIFU Dataset [38]. Both the
datasets have different properties, and in this paper, we have
compared the human-generated summaries available from
them with the outputs generated by our algorithm.

We have implemented five algorithms in Python and are
therefore used for comparing results. Let us discuss the li-
braries used for implementing the following algorithms:

(a) TF-IDF algorithm: the implementation of the TF-
IDF algorithm has been done by utilizing the NLTK
kit for sentence tokenization. The generated results
have been discussed hereinafter

(b) LexRank algorithm: SUMY is a Python-based library
that helps to extract summaries from HTML pages. It
can be considered an automated text summarizer
library that has provided the basic implementation
for the LexRank algorithm

(c) TextRank algorithm: SUMMA provides text sum-
marization algorithms and resources required for the
same. It is built by utilizing the GATE API. For this
algorithm, we used the SUMMA package for sum-
mary generation. It contains the implementation of
various algorithms. We have utilized the TextRank
algorithm provided by the package

(d) BertSum algorithm: BertSum algorithm is implemented
and provided by the best-extractive-summarizer library.
We have utilized the implementation per our re-
quirements and according to the benchmarks utilized
for evaluation and comparison

(e) PEGASUS algorithm: for implementing the PEGA-
SUS algorithm, we used inbuilt libraries sentence

10

piece and transformers, in which we used “google/
pegasus-multi_news” and “google/pegasus-red-
dit_tifu” models while generating the summaries of
text

4.2. Evaluation Metrics. In general, there are three types of
evaluations: coselection-based assessment (with a reference
summary), document-based assessment (with the original
document), and content-based assessment (without refer-
ence summary) [32]. We briefly discuss them as follows.

(a) Coselection-Based Evaluation Metrics. This evalua-
tion technique is based on keywords in the system
summary, and it necessitates a comparison of ref-
erence summaries of the documents. The reference
summary and system summary’s common words are
chosen and assessed separately. Recall, F-score, and
precision are the measurements

(b) Content-Based Evaluation Metrics. This technique
assesses the summarizing system in terms that are
widely understood. The outline cannot get a network
of thoughts, a stream of sentences, the relatedness of
sentences to previous phrases, or content curiosity.
Every one of these difficulties may be addressed
using a content-based approach. We show some
content-based assessment methodologies that take
into account a text’s varied features. It just neces-
sitates a system overview, which contains metrics
like cohesiveness, nonredundancy, and readability

(¢c) Document-Based Evaluation Metrics. When two
phrases in a document have the same relevance, but
neither is included in the reference summary, these
evaluation metrics fail to assess the system summary

properly

Regarding this paper, we have used coselection-based
metrics for evaluation, especially the ROUGE framework,
which is explained in more detail hereinafter.

4.2.1. ROUGE. Since the mid-2000, the ROUGE metric has
been broadly utilized for programmed assessment of out-
lines [16]. Lin called it Recall-Oriented Understudy for
Gisting Evaluation (ROUGE), and he presented various
measurements that help in naturally deciding the nature of
an outline by comparing it with human (reference) synopses
considered mostly as the ground truth.

Different types of ROUGEs are used in comparing
different sentences. The granularity of texts compared be-
tween the system summaries and reference summaries can
be thought of as ROUGE-L, ROUGE-N, and ROUGE-S.

(a) ROUGE-N identifies overlap between unigrams,
bigrams, trigrams, and higher-order n-grams

(b) ROUGE-L uses the longest common sentence (LCS)
to determine the most extended corresponding se-
quence of terms. LCS has the benefit of demanding
in-sequence matches that capture sentence-level
word order rather than sequential matches. You do

Computational Intelligence and Neuroscience

not need to specify an n-gram length since it con-
tains the longest in-sequence typical n-grams by
default

(c) ROUGE-S is any pair of words in the proper order of
a phrase, accounting for gaps. This is referred to as
skip-gram concurrence. Skip-bigram, for example,
tests the overlap between word pairs with a limit of
two spaces between them. For example, the skip-
bigrams for the term “dog in the basket” will be “dog
in, dog the dog basket, in the, in a basket, the basket”

ROUGE-1 refers to the overlap of unigrams between the
device description and the reference summary regarding this
study. ROUGE-2 refers to the overlap of bigrams between
the method and comparison summaries. Generally, there are
three metrics [39] that ROUGE generates for analyzing the
results.

(i) Recall. Recall is an aspect of the ROUGE metric that
can be considered as the amount of original data
given to the model that has been used to generate
the summary.

(ii) F-Score. The F-score is a numerical value derived
using precision and recall. It is utilized to express
the right combination of recall and precision.

2 = recall = precision
F — score =

(8)

recall + precision

(iii) Precision. Precision refers to the measurable amount
of summary generated that was essentially needed
or required for generating an efficient summary.

Both the dataset and our algorithm outputs are provided
into the ROUGE function, which is used to assess the
similarity of two phrases by counting the number of
overlapping words and then generating a result in the form
of three metrics called recall, F-score, and precision.

5. Result Analysis

Let us consider the result generated by each of the datasets
discussed in the section above. The datasets have been se-
lected from the set of datasets available at [40] Tensor flow
catalog under the summarization section.

5.1. MultiNews Dataset. This dataset contains a human-
generated summary of the various news articles cited on
https://newser.com [37]. Professional editors have written
these summaries and include links to the original articles
cited.

For this dataset, the average summary generated by all
the examples contains an average of three sentences in the
resultant summary. Therefore, for better result generation,
we kept a three-sentence summary as a reference. The results
generated after using this dataset as a reference summary
provider are depicted in Table 1.

We can see from Table 1 that on the MultiNews dataset,
TextRank gives the best result out of all the algorithms on
ROUGE-1 metrics, and PEGASUS delivers the best

https://newser.com

Computational Intelligence and Neuroscience 11
TaBLE 1: ROUGE metrics for MultiNews dataset.
No. Algorithm Rog-1-f Rog-1-p Rog-1-r Rog-2-f Rog-2-p Rog-2-r Rog-1-f Rog-l-p Rog-l-r
1 TEF-IDF 0.2971 0.35273 0.25663 0.0821 0.0987 0.0703 0.2495 0.2849 0.222
2 LexRank 0.2941 0.4203 0.22619 0.0765 0.1077 0.0593 0.2307 0.3306 0.1772
3 BertSum 0.2584 0.42442 0.18581 0.0745 0.1325 0.0519 0.2268 0.3501 0.1678
4 TextRank 0.5948 0.60544 0.58456 0.1112 0.0736 0.2276 0.2828 0.2041 0.4605
5 PEGASUS 0.438 0.49796 0.39095 0.1998 0.2261 0.179 0.3734 0.4296 0.3303
0.8
0.6
E
S
m 04 M e
O
2
&
) V V Py ‘ V ‘ “ ‘ ‘ V
I Il il ‘ |

rog-1-f rog-1-p rog-l-r rog-2-f rog-2-p rog-2-r rog-1-f rog-l1-p rog-l-r
ROUGE Parameters
I TF-IDF B TextRank
I LexRank [PEGASUS
BERT Sum

F1GURE 6: Comperision of results of summarization algorithms on MultiNews dataset.

performance for ROUGE-2 and ROUGE-L metrics out of all
the compared algorithms. If we compare the overall average
of F-score, then PEGASUS has the best F-score for all, and
TextRank has the second best average F-score and best
among the extractive-based algorithms.

Here is a visual representation of the above-gathered
data, which will analyze the performance of different al-
gorithms in Figure 6.

5.2. Reddit-TIFU Dataset. This dataset contains the samples
of the Reddit dataset, and TIFU here stands for the sub-
reddit’s name [38]. It also contains handwritten summaries
of the samples present in the dataset, which are used for
reference. For this dataset, the average summary generated
for each sample was of a 3-sentence length. Therefore, while
fetching the results, we used three-sentence summaries as
the generated summary from our algorithms. The results
were then compared using the ROUGE library implemented
in Python and are shown in Table 2 for all five algorithms.

It is visible from Table 2that , for the Reddit dataset, the
TextRank algorithm gives the best possible results out of the
four extractive-based algorithms, which has the highest
average of F-score and PEGASUS outperforms them all, as
visible in the chart below too. Either of these algorithms can
be used for generating summaries of long texts, which are
similar to the samples of the Reddit-TIFU dataset.

Here is a visual representation of the above-gathered
data, which will analyze the performance of different al-
gorithms in Figure 7.

In this paper, we have compared the algorithms using the
two datasets mentioned above. We also observed that, in
various other research papers, these algorithms had been
compared on different datasets than the ones mentioned
here, and our algorithms have shown better results on both
the datasets mentioned in this paper. Possibly, TF-IDF,
LexRank, and TextRank showed excellent performance [23].
This paper also compares TextRank and LexRank algorithms
on the Opinosis dataset and the ROUGE values generated by
[41] are presented in Table 3.

It is visible that both these algorithms TextRank and
LexRank give better results on Reddit-TIFU and MultiNews
dataset when compared to the result generated by the
Opinosis dataset.

TextRank algorithm has performed better than other
extractive summarization algorithms because of various
reasons. TextRank algorithm follows unsupervised learning
as there is no requirement of training data set and no hu-
man-generated input which allows the algorithm to deliver
better results as compared to other algorithms. TextRank
algorithm is designed in such a way that due to its internal
implementation of PageRank algorithm and generation of
the similarity matrix, its performance is better than LexRank
and BERT Algorithm.

12

Computational Intelligence and Neuroscience

TaBLE 2: ROUGE metrics for REDDIT-TIFU dataset.

No. Algorithm Rog-1-f Rog-1-p Rog-1-r Rog-2-f Rog-2-p Rog-2-r Rog-I-f Rog-lI-p Rog-1-r
1 TE-IDF 0.2095 0.1819 0.4208 0.1251 0.1578 0.1839 0.1282 0.1835 0.3525
2 LexRank 0.2199 0.1183 0.3312 0.1275 0.2034 0.1806 0.1442 0.1709 0.2713
3 BertSum 0.2261 0.1165 0.3887 0.1209 0.1263 0.1832 0.1356 0.1905 0.3362
4 TextRank 0.2159 0.1098 0.5056 0.1258 0.1555 0.2215 0.1258 0.1784 0.4279
5 PEGASUS 0.2376 0.2139 0.3293 0.1845 0.2766 0.2023 0.2175 0.1974 0.3846
0.6

2 04

=

g

Y]

2

- ‘ ‘ ‘ ‘ ‘ ‘I “ ‘ ‘

0.0 ‘ ‘ ‘I I “ ‘ | ‘ “ || ‘
rog-1-f rog-1-p rog-1-r rog-2-f rog-2-p rog-2-r rog-1-f rog-l1-p rog-1-r
ROUGE Parameters
I TE-IDF I TextRank
B LexRank I PEGASUS
BERT Sum
Figure 7: Comperision of results of summarization algorithms on REDDIT-TIFU dataset.
TaBLE 3: Precision, recall, and F-measure of algorithms.

Algorithm F-measure Recall Precision
TextRank 0.133 0.085 0.382
LexRank 0.19 0.148 0.331

6. Conclusion

Development inaccessibility and prominence of the web
have given us a massive measure of crude and chaotic in-
formation, which can be put to great use. For simplicity of
information, appraisal effective and mechanized synopsis
has gotten significant, and a request will probably be filled in
coming years. In this paper, we have examined, applied, and
assessed diverse extractive synopsis methods, broke down
their downsides, and flourished to arrive at an ideal answer
for a productive outline. Even though it is not possible to
explain the implementation for each algorithm in detail, we
have tried to give an insight into each algorithm through our
paper and depict the advancements in various techniques for
summarization. We have continually focussed on improving
the proficiency of rundown strategies, and it has prompted a
vigorous establishment for us to work upon.

We have extensively compared the algorithms, ie.,
Extractive and Abstractive, on different datasets, and they
have shown excellent results and are better than their
previous implementations in other papers. This paper

mainly compared them on two popularly known datasets,
i.e., Reddit-TIFU and MultiNews, and suggested the best
possible algorithm for text summarization out of the five
available algorithms. Therefore, it is clear from the analysis
that, for both the datasets, PEGASUS delivered the best
results among all the algorithms with the highest average
F-score and TextRank delivered the best results among all
the extractive-based algorithms. Moreover, all the other
algorithms used in this paper have also shown better results
on both these datasets compared to other datasets used in
various other papers mentioned above. This study may be
useful for researchers in the future for the selection of the
appropriate algorithm for different text summarization.
They may directly use PEGASUS for abstractive text sum-
marization and TextRant for extractive text summarization
for other datasets.

Tough, automatic text summarization has unlimited
scope in the present scenario but one of its crucial appli-
cations may be in the summarization of biomedical docu-
ments. The traditional approaches in text summarization
concerning biomedical documents suffer from fundamental

Computational Intelligence and Neuroscience

issues such as its inability to capture clinical context, pro-
ducing a summary of biomedical documents, and quality of
shreds of evidence. The proposed text summarization
techniques can be used as one of the tools to retrieve and
produce meaningful information to end-users from a huge
biomedical repository and thus can help people make
complex clinical decisions.

Data Availability

Data will be available on request. For data, kindly contact
Divakar Yadav, divakaryadav@nith.ac.in.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] N. Vanetik, M. Litvak, E. Churkin, and M. Last, “An unsu-
pervised constrained optimization approach to compressive
summarization,” Information Sciences, vol. 509, pp. 22-35,
2020.

[2] R. A. Garcia-Herndndez and Y. Ledeneva, “Single extractive
text summarization based on a genetic algorithm,” in Mexican
Conference on Pattern Recognition, pp. 374-383, Springer,
Berlin, Germany, 2013.

[3] W. S. El-Kassas, C. R. Salama, A. A. Rafea, and
H. K. Mohamed, “Automatic text summarization: a com-
prehensive survey,” Expert Systems with Applications, vol. 165,
Article ID 113679, 2021.

[4] R.Nallapati, B. Zhou, C. Gulcehre, and B. Xiang, “Abstractive
text summarization using sequence-to-sequence rnns and
beyond,” 2016, https://arxiv.org/abs/1602.06023.

[5] C.Khatri, G. Singh, and N. Parikh, “Abstractive and extractive
text summarization using document context vector and re-
current neural networks,” 2018, https://arxiv.org/abs/1807.
08000.

[6] S. Singla, N. Duhan, and U. Kalkal, “A novel approach for
document ranking in digital libraries using extractive sum-
marization,” International Journal of Computer Applications,
vol. 74, no. 18, pp. 25-31, 2013.

[7] N. M. Abdelaleem, H. A. Kader, and R. Salem, “A brief survey
on text summarization techniques,” IJ of Electronics and
Information Engineering, vol. 10, no. 2, pp. 103116, 2019.

[8] A. Elrefaiy, A. R. Abas, and I. Elhenawy, “Review of recent
techniques for extractive text summarization,” Journal of
Theoretical and Applied Information Technology, vol. 96,
no. 23, pp. 7739-7759, 2018.

[9] A. Sinha, A. Yadav, and A. Gahlot, “Extractive text sum-
marization using neural networks,” 2018, https://arxiv.org/
abs/1802.10137.

[10] A. Nenkova and K. McKeown, “A survey of text summari-
zation techniques,” in Mining Text Data, pp. 43-76, Springer,
Boston, MA, USA, 2012.

[11] J. N. Madhuri and R. G. Kumar, “Extractive text summari-
zation using sentence ranking,” in Proceedings of the 2019
International Conference on Data Science and Communication
(IconDSC), pp. 1-3, IEEE, Bangalore, India, 2019, March.

[12] K. Vimal Kumar and D. Yadav, “An improvised extractive
approach to Hindi text summarization,” Advances in Intel-
ligent Systems and Computing, Springer, vol. 339, pp. 291-300,
New Delhi, 2015.

13

[13] M. Allahyari, S. Pouriyeh, M. Assefi et al., “Text summari-
zation techniques: a brief survey,” 2017, https://arxiv.org/abs/
1707.02268.

[14] M. Dutta, A. K. Das, C. Mallick, A. Sarkar, and A. K. Das, “A
graph based approach on extractive summarization,” in
Emerging Technologies in Data Mining and Information Se-
curity, pp. 179-187, Springer, Singapore, 2019.

[15] Y. K. Meena and D. Gopalani, “Evolutionary algorithms for
extractive automatic text summarization,” Procedia Computer
Science, vol. 48, pp. 244-249, 2015.

[16] J.P. Verma and A. Patel, “Evaluation of unsupervised learning
based extractive text summarization technique for large scale
review and feedback data,” Indian Journal of Science and
Technology, vol. 10, p. 17, 2017.

[17] J. M. Sanchez-Gomez, M. A. Vega-Rodriguez, and C. J. Pérez,
“The impact of term-weighting schemes and similarity
measures on extractive multi-document text summarization,”
Expert Systems with Applications, vol. 169, Article ID 114510,
2021.

[18] G. Erkan and D. R. Radev, “Lexrank: graph-based lexical
centrality as salience in text summarization,” Journal of Ar-
tificial Intelligence Research, vol. 22, pp. 457-479, 2004.

[19] W. Xiao and G. Carenini, “Extractive summarization of long
documents by combining global and local context,” 2019,
https://arxiv.org/abs/1909.08089.

[20] R.Mihalcea and P. Tarau, “Textrank: bringing order into text,”
in Proceedings of the 2004 conference on empirical methods in
natural language processing, pp. 404-411, Barcelona, Spain,
2004, July.

[21] D. Miller, “Leveraging BERT for extractive text summariza-
tion on lectures,” 2019, https://arxiv.org/abs/1906.04165.

[22] R. Ferreira, L. de Souza Cabral, R. D. Lins et al., “Assessing
sentence scoring techniques for extractive text summariza-
tion,” Expert Systems with Applications, vol. 40, no. 14,
pp. 5755-5764, 2013.

[23] R. Raniand D. K. Lobiyal, “An extractive text summarization
approach using tagged-LDA based topic modeling,” Multi-
media Tools and Applications, vol. 80, no. 3, pp. 3275-3305,
2021.

[24] M. Mojrian and S. A. Mirroshandel, “A novel extractive multi-
document text summarization system using quantum-inspired
genetic algorithm: mtsqiga,” Expert Systems with Applications,
vol. 171, Article ID 114555, 2021.

[25] K. V. Kumar, D. Yadav, and A. Sharma, “Graph based
technique for Hindi text summarization,” Advances in In-
telligent Systems and Computing, Springer, vol. 339,
pp- 301-310, , New Delhi, 2015.

[26] B. Mutlu, E. A. Sezer, and M. A. Akcayol, “Candidate sentence
selection for extractive text summarization,” Information
Processing & Management, vol. 57, no. 6, Article ID 102359,
2020.

[27] N. Moratanch and S. Chitrakala, “A survey on abstractive text
summarization,” in Proceedings of the 2016 International
Conference on Circuit, power and computing technologies
(ICCPCT), pp. 1-7, Nagercoil, India, March 2016.

[28] J. Zhang, Y. Zhao, M. Saleh, and P. Liu, “Pegasus: pre-training
with extracted gap-sentences for abstractive summarization,”
in Proceedings of the International Conference on Machine
Learning, pp. 11328-11339, Virtual Event, 2020, November.

[29] T. Shi, Y. Keneshloo, N. Ramakrishnan, and C. K. Reddy,
“Neural abstractive text summarization with sequence-to-
sequence models,” ACM/IMS Transactions on Data Science,
vol. 2, no. 1, pp. 1-37, 2021.

mailto:divakaryadav@nith.ac.in
https://arxiv.org/abs/1602.06023
https://arxiv.org/abs/1807.08000
https://arxiv.org/abs/1807.08000
https://arxiv.org/abs/1802.10137
https://arxiv.org/abs/1802.10137
https://arxiv.org/abs/1707.02268
https://arxiv.org/abs/1707.02268
https://arxiv.org/abs/1909.08089
https://arxiv.org/abs/1906.04165

14

[30] M. Yang, C. Li, Y. Shen, Q. Wu, Z. Zhao, and X. Chen,
“Hierarchical human-like deep neural networks for abstrac-
tive text summarization,” IEEE Transactions on Neural Net-
works and Learning Systems, 2020.

[31] N. Moratanch and S. Chitrakala, “A survey on extractive text
summarization,” in Proceedings of the 2017 international
conference on computer, communication and signal processing
(ICCCSP), pp. 1-6, Chennai, India, 2017, January.

[32] H. Christian, M. P. Agus, and D. Suhartono, “Single docu-
ment automatic text summarization using term frequency-
inverse document frequency (TF-IDF),” ComTech: Computer,
Mathematics and Engineering Applications, vol. 7, no. 4,
pp. 285-294, 2016.

[33] S. A. Babar and P. D. Patil, “Improving performance of text
summarization,” Procedia Computer Science, vol. 46,
pp. 354-363, 2015.

[34] D. M. Victor, F. F. Eduardo, R. Biswas, E. Alegre, and
L. Fernandez-Robles, “Application of extractive text sum-
marization algorithms to speech-to-text media,” in Proceed-
ings of the International Conference on Hybrid Artificial
Intelligence Systems, pp. 540-550, Ledn, Spain, 2019,
September.

[35] H. P. Luhn, “The automatic creation of literature abstracts,”
IBM Journal of Research and Development, vol. 2, no. 2,
pp. 159-165, 1958.

[36] D. Oluwajana and E. Celebi, “Single-document summariza-
tion using latent semantic analysis,” International Journal of
Scientific Research in Information Systems and Engineering
(IJSRISE), vol. 1, no. 2, pp. 57-64, 2015.

[37] “MultiNews dataset reference,” 2021, https://www.tensorflow.
org/datasets/catalog/multi_news.

[38] “Reddit-TIFU dataset reference,” 2021, https://www.
tensorflow.org/datasets/catalog/reddit_tifu.

[39] P. Verma, S. Pal, and H. Om, “A comparative analysis on
Hindi and English extractive text summarization,” ACM
Transactions on Asian and Low-Resource Language Infor-
mation Processing, vol. 18, no. 3, pp. 1-39, 2019.

[40] “Tensorflow catalogue reference,” 2021, https://www.
tensorflow.org/datasets/catalog/overview.

[41] R. C. Belwal, S. Rai, and A. Gupta, “Text summarization using
topic-based vector space model and semantic measure,” In-
formation Processing & Management, vol. 58, no. 3, Article ID
102536, 2021.

Computational Intelligence and Neuroscience

https://www.tensorflow.org/datasets/catalog/multi_news
https://www.tensorflow.org/datasets/catalog/multi_news
https://www.tensorflow.org/datasets/catalog/reddit_tifu
https://www.tensorflow.org/datasets/catalog/reddit_tifu
https://www.tensorflow.org/datasets/catalog/overview
https://www.tensorflow.org/datasets/catalog/overview

