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Abstract
Knowledge of location is of utmost importance in many indoor Location-Based Services 
(LBS). Although traditional technique such as trilateration involving the use of received 
signal strengths (RSS’s) is quite popular and simple to use for wireless sensor network 
(WSN) based target localization, the location estimates obtained using it are not accu-
rate and reliable. The reason behind this is the highly fluctuating nature of RSS’s due to 
dynamic RF environment and non-linear system dynamics. If the dataset is sparse, the 
concept of centroid is very useful to estimate fairly closer approximation to the underly-
ing relationship in the given dataset. The GRNN architecture is well known for mapping 
any nonlinear relationship between input and output. To address the problems with the 
RSS based target localization and tracking (L&T) using WSN for indoor environment, a 
novel range free Centroid Generalized Regression Neural Network (C-GRNN) algorithm 
is presented in this paper. The proposed C-GRNN algorithm is formed by combining the 
advantages of both centroid and GRNN. In order to realize the dynamicity in given RF 
environment, the variance in the RSSI measurements is varied from 3 to 6 dBm. During 
simulation experiments, although the variance in the RSSI measurements is doubled, the 
average RMSE and average localization error are increased by only approximately 28.31%, 
and 22.28% respectively. This rise in localization errors with the proposed C-GRNN archi-
tecture is very less as compared to the trilateration as well as GRNN based technique.

Keywords  Location-based services (LBS) · Received signal strength (RSS) · Wireless 
sensor network (WSN) · Trilateration · Centroid · Generalized regression neural network 
(GRNN) · Localization and tracking (L&T)

1  Introduction

Today sensor network is a basic building block in applications involving smart sens-
ing and ubiquitous computing, and has plenty of localization and tracking (L&T) based 
applications [1–3]. The heavy deployment sensor nodes can scan, sense the useful physical 

 *	 Satish R. Jondhale 
	 profsatishjondhale@gmail.com

Extended author information available on the last page of the article

http://orcid.org/0000-0003-2908-5610
http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-022-09627-9&domain=pdf


	 S. R. Jondhale et al.

1 3

parameters from the environment and send these measurements to the base station for fur-
ther processing. The measurements collected are useful only if knowledge of source of data 
is known [4–6]. Therefore, the underlying target localization mechanism plays very cru-
cial role in the WSN based applications. The L&T is one of the core application areas 
of the WSN. Although GPS is widely used for localization in outdoor environment, GPS 
based location estimates are not accurate and reliable for indoor environmental setup [7, 
8]. The reason behind this is unavailability of GPS signals in indoor. Consequently, the 
indoor L&T applications require GPS-less architecture. The low cost and low power WSN 
technology is proved to be very useful to address the problem of indoor L&T. The WSN 
based localization has two major categories namely, range-free and range (distance)-based 
[9–11]. The range-free localization is based on relationship between inter node connec-
tivity and network topology, whereas the range-based approach is based on computing 
the distances between sensor nodes. Generally, the localization accuracy is high in latter 
approach. Out of various measurement metrics in range-based as well as range free tech-
niques, received signal strength indication (RSSI) or RSS is widely used in the WSN based 
L&T. The major reason behind this is that unlike other methods the RSSI based system do 
not need additional hardware in the process of localization [12, 13]. The research work in 
this paper utilizes RSSI measurements to locate the single target moving in WSN defined 
area.

The traditional trilateration technique is widely used in the RSSI based target L&T 
because of its simplicity in use [14, 15]. In practice, trilateration-based method of localiza-
tion suffer lead to estimation of inaccurate (erroneous) locations of the target [16]–[18]. 
The obvious reason is due to uncertain noise involved in RSSI measurements because of 
signal attenuation, multipath fading, NLOS condition, and shadowing effects. Additionally, 
if there is an abrupt variation in velocity of mobile target, the probability of large localiza-
tion error is very high. Looking the L&T problem from another perspective, the concept 
of centroid can be very useful to provide accurate estimate if the underlying RSSI dataset 
is sparse [19–23]. Recently the Weighted centroid based localization (WCL) using RSSI 
measurements has been found to be an attractive low complexity solution for target L&T 
[19, 22, 23]. The WCL based localization algorithm uses position of anchors that are in 
the communication radius of unknown node whose position is to be estimated. The WCL 
algorithm generally yields low localization accuracy, especially if the unknown node is 
outside a polygon established by the anchors. Some researchers have proved that by fusing 
the centroid concept with some other existing localization framework the localization error 
can be significantly reduced. The authors in [19] have proposed a fuzzy-based centroid 
localization (FCL) algorithm for localization. In proposed FCL, the anchor nodes are pri-
oritized using fine-tuned weights. The results obtained with FCL method are superior than 
existing WCL based localization methods. In [23], the authors proposed a particle centroid 
drift (PCD) algorithm for large scale WSN with an objective to reduce the distance estima-
tion errors. In PCD based system centroid algorithm is combined with particle distribution 
function to form in high quality particles. These high-quality particles in PCD algorithm 
benefits in low localization errors along with low time complexity.

We know that artificial neural network (ANN) once trained with appropriate dataset, 
can deal with almost any non-linear system dynamics [24]. However, choosing appropri-
ate ANN architecture for the given indoor L&T application is very crucial. The GRNN 
is found to be suitable to variety of target L&T applications involving highly nonlinear 
system dynamics. Unlike other ANN architectures, the GRNN has only one control param-
eter. That is GRNN smoothing factor. We have previously used the concept of GRNN and 
applied it in several ways to solve the problem of single mobile target L&T [16–18]. For 
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instance, we proposed and verified two algorithms namely: GRNN + KF and GRNN + UKF 
to address uncertainty in RSSI measurement noise in [16]. The proposed GRNN architec-
ture is trained with training dataset that consists of input vectors (four RSSI measurements) 
and corresponding output vector (actual 2-D locations of target). Here the location esti-
mates obtained with developed GRNN architecture are applied to KF and UKF to further 
smooth the GRNN location estimates. These GRNN + KF and GRNN + UKF algorithms 
are also validated in a real time experiment carried out in our institute laboratory [18]. In 
this experiment, we proved that the moving person can be tracked efficiently using wireless 
communication network formed using smartphone and PSOC BLE nodes. Although the 
algorithms presented in [16, 18] show improved localization results than that with trilatera-
tion, GRNN, RSSI + KF, and RSSI + UKF algorithms, the RSSI measurement noise is kept 
constant (i.e. 3 dBm). Motivated by the benefits of centroid concept, and GRNN, and, we 
propose a novel range free Centroid Generalized Regression Neural Network (C-GRNN) 
architecture for RSSI based indoor target L&T problem using WSN. The main contribu-
tions of this research work are listed below.

(1)	  We formulated a novel framework based on the GRNN, and centroid for the problem 
of RSSI based L&T of single target moving in indoor environment, namely C-GRNN. 
Unlike our previous GRNN architecture [16, 18], input vector dimension for the pro-
posed C-GRNN architecture is 6. Unlike localization analysis in our previous works 
[16, 18], a new parameter for the evaluation of localization performance is introduced 
(i.e. Regression Coefficient R).

(2)	 The proposed C-GRNN algorithm is tested and verified against dynamicity in the sur-
rounding environment (high fluctuations in RSS measurements) as well as non-linear 
system dynamics (abrupt variation in target velocity) through MATLAB simulations. 
Unlike [16, 18], we critically analyzed the proposed C-GRNN algorithm by increasing 
the measurement noise in RSSI from 3 to 6 dBm in steps of 3 dBm.

(3)	 We compared the localization performance of the proposed C-GRNN algorithm with 
trilateration as well as with our previously published GRNN algorithm. Simulation and 
numerical results demonstrate that C-GRNN algorithm better deal with the environ-
mental dynamicity and non-linear system dynamics as compared to trilateration and 
GRNN.

The remaining structure of the paper is as follows. Section 2 briefly discusses the archi-
tecture of proposed C-GRNN architecture. We present system design and results obtained 
with proposed algorithm in detail through extensive simulations in Sect. 3 and Sect. 4, fol-
lowed by conclusions at the end in Sect. 5.

2 � C‑GRNN Architecture for Target Localization

The RSS’s used in this research work are artificially generated using log normal shadow 
fading model (LNSM) as given below [9, 16, 18]:

where (z
�j,k )—RSSI received at the node N

�
 with coordinates (x

�k, y�k) at time k . It is 
assumed to be transmitted by node Nj with coordinates (xjk, yjk),Pr(d0)—RSSI at receiver 
kept at a distance d0(1 m),�—Path loss exponent. Like [16], here also it is kept 2.84.X�

(1)z
�j,k = Pr(d0) − 10� log(dlj,k∕d0) + X� ,
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—Normal random variable with some value of variance, and standard deviation. Here, dur-
ing analysis of the proposed C-GRNN architecture, the variance, and standard deviation 
are kept 3 dBm, and 1 dBm respectively in Case I such that X� ∼ N(3, 1). Whereas, in Case 
II standard deviation is kept same as 1 dBm as but variance is changed to 6 dBm. In short, 
it represents measurement noise in RSSI values.

It is well known that the GRNN can converge any linear or nonlinear regression 
surface (sparse data sets) very quickly. For estimating output, it measures the distance 
of given input vector from vectors used in the training dataset. The detailed study of 
GRNN can be found in [25]. In this work we designed the proposed C-GRNN architec-
ture by fusing the concept of centroid in the GRNN architecture. The input to the pro-
posed C-GRNN is (input vector consisting of any four RSSI measurements, and Cen-
troid location), and its output is (output vector that includes estimated 2-D location) 
(See Fig. 1).

The location estimation given by C-GRNN architecture is given as [16, 18]:

where M—Estimated 2-D location,X —A input vector consisting of four RSSI measure-
ments and Centroid location),�—Smoothing factor, and.n—Dimension of input vector. 
Here n = 6.

Choosing appropriate value of � is very important in case of GRNN and C-GRNN 
for accurate output estimation [16, 18]. In order to compare our previously published 
GRNN architecture with the proposed C-GRNN architecture, we took � = 3.5.

(2)M(X) =

∑n

i=1
Mi exp

�

−D2
i

2�2

�

∑n

i=1
exp

�

−D2
i

2�2

�

(3)D2
i
= (X − Xi)

T .(X − Xi)

Fig. 1   C-GRNN Architecture for Target L&T
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3 � System Design and Assumptions of C‑GRNN Based L&T System

In this research work an indoor area of 100 m × 100 m is simulated using MATLAB 2016a 
as shown in Fig. 2. Total 16 WSN nodes are assumed to utilized for the proposed target 
L&T problem, out of which 15 are considered to be anchor nodes. The remaining 1 node 
is assumed to be carried by the target during motion. All of the anchor nodes are sup-
posed to be configured in transmitter mode, whereas the node carried by the mobile target 
is assumed to be configured in receiver mode. The anchor nodes are deployed at locations 
as given in Table 1 and shown in Fig. 2. The total number of unknown target locations to 
be estimated during target motion in this work are 35. The location estimations are carried 
out using trilateration technique, GRNN algorithm and the proposed C-GRNN algorithm.

The Fig. 3 illustrates the proposed C-GRNN architecture-based target L&T system as 
shown below.

The GRNN and C-GRNN architectures are trained with the help of 75 sets of input 
vector (field measurements) and corresponding output vector (Actual 2-D location of 

Fig. 2   Simulated Indoor Environment and Deployment of Anchor Nodes

Table 1   Deployment of Anchor 
Nodes in the simulations

Anchor node 
number

2-D location Anchor node 
number

2-D location

1 (14, 8) 9 (92, 40)
2 (25, 30) 10 (68, 18)
3 (35, 45) 11 (59, 80)
4 (37, 80) 12 (48, 50)
5 (50, 65) 13 (32, 41)
6 (70, 70) 14 (10, 40)
7 (62, 42) 15 (67, 32)
8 (85, 70)
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target corresponding to those field measurements) (See Fig. 4). This training dataset (of 
75 sets of input and output vectors) is obtained for X� ∼ N(3, 1) through some random 
trial of target motion as described by Eqs. (6–11). For each trial the Once the proposed 
C-GRNN is trained, it is ready to estimate any real time target location for input vector 
corresponding to that location in online localization stage. The operational difference 
between the GRNN architecture and C-GRNN architecture is the dimension of input 
vector. The input vector for GRNN architecture consists of any four random RSSI meas-
urements, whereas input vector for C-GRNN architecture includes the same four ran-
dom RSSI measurements, and centroid coordinates of anchors which produced those 
four RSSI measurements (See Eq. 4). Thus, the input vector dimensions for GRNN and 
C-GRNN architectures are 4 and 6 respectively. Although the Fig. 4 shows system block 
diagram of C-GRNN based target L&T system, it is also applicable for GRNN based 

Fig. 3   System Block Diagram of C-GRNN based Target L&T System

Fig. 4   Comparison of Target Location Estimations using Trilateration, GRNN and C-GRNN (case I)
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L&T system. In order to visualize GRNN based L&T system all we have to replace 
C-GRNN architecture box by GRNN box, and remove C1 and C2 from Xi in Eq. (4).

where Xi—ith Input vector for C-GRNN architecture,RSSI1 to RSSI4—RSS’s obtained 
from four random anchors.C1 and C2—x and y coordinates of centroid of four anchors.

Let’s consider the coordinates of anchors who generated RSSI1, RSSI2,RSSI3, and 
RSSI4 are (x1, y1), (x2, y2), (x3, y3), and (x4, y4) respectively. Then C1 and C2 can be com-
puted using coordinates of anchors who generated RSSI1 to RSSI4 as given below in 
Eq. (5).

Unlike GRNN and C-GRNN architectures, trilateration does not need such training 
prior to its real time application. As the target path is fixed, so we know all 35 unknown 
locations of target, thus 15 RSSI measurements we get for each of these locations. Out 
of these 15 measurements, three higher values of RSSI measurements are utilized to 
estimate the target location in case of trilateration. Whereas, the GRNN and C-GRNN 
works with any four random RSSI measurements during online estimation phase. The 
MATLAB simulations are carried out on hp platform with Core i5, and 4 GB RAM. The 
transmission power and communication radius of node is assumed to be 1 milliwatts (0 
dBm) and 50 m respectively.

The state of moving target at time instant k is defined by state vector 
Xk = (xk, yk, ẋk, ẏk)

� , where xk and yk specify the x and y coordinates target, ẋk and ẏk 
specify target velocities in x and y directions respectively at kth time instance.

where dt is discretization time step between two successive time instants such that 
dt = k − (k − 1) and is kept 1 s. The target motion undergoes the variation in velocity for 
total simulation period of T  seconds as given by Eq. (8) to Eq. (11). In this work, T = 35 
seconds. The negative velocity means target is moving opposite direction.

Like previous works [9, 16, 18], in order to evaluate the localization performance 
of the proposed C-GRNN algorithm two parameters are considered namely, Average 
Localization Error (See Eq. 12) and root mean square error (RMSE) (See Eqs. 13–15. 
Lower the values of these two parameters, high will be the target localization (or track-
ing) accuracy.

(4)Xi = [RSSI1,RSSI2,RSSI3,RSSI4,C1,C2], i = 1, 2, ....75.

(5)C1 =

(

x1 + x2 + x3 + x4

4

)

, C2 =

(

y1 + y2 + y3 + y4

4

)

(6)xk = xk−1 + ẋk dt ,

(7)yk = yk−1 + ẏk dt ,

(8)ẋk = 2, ẏk = 5, for 0 < k < 9 sec,

(9)ẋk = 5, ẏk = 2, for 9 ≤ k ≤ 15 sec,

(10)ẋk = 0, ẏk = 0, for 16 ≤ k ≤ 17 sec,

(11)ẋk = 2, ẏk = −3, for 18 ≤ k ≤ 35 sec .
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where (x̂k, ŷk)—Estimated target location for kth time instance,(xk, yk)—Actual target loca-
tion at kth time instance.

One more way to prove the efficacy of the proposed localization algorithm is to plot 
estimated (predicted) target location versus actual target location using linear regression. 
MATLAB provides plotregression (target,output) command to plot the linear regression 
of target relative to output [26]. In the corresponding result figure, we get a value of 
coefficient of correlation ( R).R is a measure of correlation between actual and estimated 
value. R varies from −1 to + 1. R = −1 indicates inverse correlation between target and 
output, whereas R = +1 indicates a perfectly linear positive correlation. Unlike [9, 16, 
18], we have also used R for performance evaluation of all the techniques in this work.

4 � Discussion on Results

In order to realize the real time indoor environment, X�(See Eq. (1)) is varied in Case 
I ( X� ∼ N(3, 1) ), and Case II ( X� ∼ N(6, 1) ). For each of the simulation case, the target 
is assumed to start from (10, 10) and stop at (97, 10). Numeric values of performance 
metrics for both simulation phases in Tables 2, 3, 4, 5 and 6 are average values of 50 
simulation trials.

(12)Average Localization Error =
1

T

T
∑

k=1

(x̂k − xk) + (ŷk − yk)

2

(13)RMSEx =

√

√

√

√

T
∑

k=1

(x̂k − xk)
2

T
.

(14)RMSEy =

√

√

√

√

T
∑

k=1

(ŷk − yk)
2

T
.

(15)RMSEavg =
(RMSEx + RMSEy)

2

Table 2   Comparison of RMSE and Average Localization Errors with Trilateration, GRNN, and proposed 
C-GRNN algorithms (Case I)

Name of Localization 
Algorithm

RMSE for x Coor-
dinate

RMSE for y Coor-
dinate

Average RMSE Average 
Localization 
Error

Trilateration 36.8601 23.1512 30.0057 12.5293
GRNN 4.4092 6.2206 5.3149 4.4640
C-GRNN 4.0421 5.4015 4.7218 3.5698
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4.1 � Case I: X
�
∼ N(3, 1)

As discussed earlier the objective of this research work is to evaluate the efficacy of the 
proposed C-GRNN architecture with our previously published GRNN architecture and tra-
ditional trilateration technique for indoor L&T problem. Figure  4 plots target track, and 
corresponding location estimates obtained using trilateration, GRNN, and C-GRNN meth-
ods. Figure 4 illustrates the comparison of location estimations with C-GRNN, GRNN and 
trilateration techniques. Here, black dark circles are anchor nodes that continuously broad-
cast RF signal to be received by mobile target node. The red square indicates 35 actual 
target locations during its motion, whereas blue plus, black plus, and green plus symbols 

Table 3   Comparison of Estimations of Sample Target Locations with Trilateration, GRNN, and proposed 
C-GRNN algorithms (Case I)

Location 
Number

Actual Coordinate Coordinates estimated 
with Trilateration

Coordinates esti-
mated with GRNN

Coordinates 
estimated with 
C-GRNN

1 (10, 10) (163.53, −60.70) (10.11, 10.27) (10.11, 10.27)
2 (12, 15) (20.19, 18.05) (12.09, 15.22) (12.09, 15.22)
27 (79, 37) (79.06, 37.18) (83.51, 30.22) (78.67, 37.49)
35 (95, 13) (85.01, 24.36) (91.04, 18.94) (86.68, 25.47)

Table 4   Comparison of R values 
obtained with Trilateration, 
GRNN, and proposed C-GRNN 
algorithms through linear 
regression (Case I)

Name of 
L&T Algo-
rithm

R for actual x coordinate 
and estimated x coordinate

R for actual y coordi-
nate and estimated y 
coordinate

GRNN 0.98791 0.94392
C-GRNN 0.99032 0.96237

Table 5   Comparison of RMSE and Average Localization Errors with Trilateration, GRNN, and proposed 
C-GRNN algorithms (Case II)

Name of Localization 
Algorithm

RMSE for x Coor-
dinate

RMSE for y Coor-
dinate

Average RMSE Average 
Localization 
Error

Trilateration 62.0431 45.8233 53.9332 27.2599
GRNN 7.7049 10.7450 9.2249 6.9534
C-GRNN 5.4556 7.7174 6.5865 4.5936

Table 6   Comparison of R values 
obtained with Trilateration, 
GRNN, and proposed C-GRNN 
algorithms through linear 
regression (Case II)

Name of 
L&T Algo-
rithm

R for actual x coordinate 
and estimated x coordinate

R for actual y coordi-
nate and estimated y 
coordinate

GRNN 0.96122 0.80126
C-GRNN 0.9821 0.90996
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are the location estimations with trilateration, GRNN, and the proposed C-GRNN architec-
ture respectively against these 35 actual target locations. The overall localization error in 
estimating x and y coordinates of mobile target can be computed by taking average of indi-
vidual localization errors in estimating x and y coordinates. The overall (average) localiza-
tion error obtained with trilateration, GRNN, and C-GRNN techniques with respect to all 
the 35 target locations are plotted in Fig. 5.

From Fig. 4 it is clear that the estimations with the proposed C-GRNN architecture very 
closely match for most of the corresponding actual target locations as compared to rest 
of the other two techniques. It can be noted down that out of location estimations with 
all three techniques, the estimation results with the proposed C-GRNN based implementa-
tion is best. It is moderate and poor with GRNN, and trilateration respectively. We want to 
highlight few important observations regarding result in Fig. 4.

•	 For few locations, the estimation with C-GRNN can be seen, but the corresponding 
GRNN based estimates are not visible in Fig. 4. The reason behind this is that the esti-
mations with GRNN and C-GRNN are exactly same and overlapping with each other. 
In order to clarify this observation, kindly check estimation results of GRNN and 
C-GRNN for target location 1 (10, 10) and target location 2 (12, 15) (Refer Table 2). 
For location 1 and location 2, the estimation results with GRNN and C-GRNN are 
same and are (10.11, 10.27), and (12.09, 15.22) respectively.

•	 Few location estimates of target with trilateration are not seen in Fig.  4. The reason 
behind this is that the location estimates obtained with trilateration are out of consid-
ered monitoring area (100 m × 100 m). In order to clarify this observation, kindly check 
estimation results of trilateration for target location 1 (10, 10) (Refer Table 2). For loca-
tion 1, the location estimates obtained with trilateration is (163.53, −60.70).

•	 In case of estimations of few locations, trilateration performs even better than GRNN, 
and C-GRNN algorithms. For instance, for target location 27, the estimations obtained 

Fig. 5   Plot of Average Localization Errors in Target Location Estimation using Trilateration, GRNN and 
C-GRNN (case I)
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with trilateration are better than GRNN and the proposed C-GRNN algorithm (Refer 
Table 2). However, the better localization performance of trilateration than rest of the 
two algorithms is only for few location estimations.

•	 During location estimation for few locations, GRNN works well as compared to rest of 
the two. Take an estimation of target location 35 (See Table 2).

As described earlier the difference in the GRNN and the proposed C-GRNN architec-
ture is the difference in the dimension of input vector. The result in Fig. 4 clearly indicates 
that augmenting two extra parameters ( C1 and C2 ) in input vector for C-GRNN architecture 
certainly improves the target localization performance as compared to that that with plain 
GRNN architecture. Thus, one can note that Fig. 4 plots target track with 35 locations, and 
corresponding target location estimates with trilateration GRNN, and C-GRNN techniques. 
Whereas, Fig. 5 plots average localization errors with trilateration GRNN, and C-GRNN. 
A significant variation in localization error is observed in case of trilateration-based esti-
mation as compared to rest of the other methods. For instance, the average localization 
error with trilateration varies between 0 m to approximately 120 m. In [16], average locali-
zation error, average RMSE values obtained during simulations for X� ∼ N(3, 1) with the 
GRNN architecture are 4.7437 m, and 5.3517 m respectively. Whereas, for the same envi-
ronmental setup (i.e. X� ∼ N(3, 1) ) in this work, average localization error, average RMSE 
values obtained with the proposed C-GRNN architecture during simulations are 3.5698 m, 
and 4.7218 m respectively. This proves the localization efficacy of the proposed C-GRNN 
architecture over GRNN architecture.

Figures 6 and Fig. 7 plot regression of x and y coordinates of actual target locations and 
corresponding x and y estimations of GRNN, and C-GRNN respectively. Idea behind plot-
ting these linear regression curves here is to compare the localization performance of all of 
the three techniques (i.e. trilateration, GRNN, and C-GRNN) with respect to actual coordi-
nates of the mobile target. The R values in the context of x as well as y coordinate estima-
tions for case I are given in Table 3. It can be seen that the R values obtained with the.

proposed C-GRNN algorithm for x and y estimations are highest as compared to rest of 
the two algorithms. From Fig. 4 to Fig. 7, and Tables 4 to 3, it is clear that the proposed 
C-GRNN architecture is far more superior in target location estimation than rest of the two 
methods. From these figures, one can very easily observe that the localization errors on 
an average are high, moderate and low for trilateration, GRNN, and C-GRNN algorithms 
respectively. It clearly means that the proposed C-GRNN architecture is superior in dealing 

Fig. 6   Comparison of regression in x coordinate Estimation for GRNN, and C-GRNN (case I)
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with the environmental dynamicity and non-linear system dynamics as compared to rest of 
the other two techniques.

4.2 � Case II: X
�
∼ N(6, 1)

The case II results are illustrated with the help of Figs.  8, 9, 10 and 11. Figure  8 plots 
target track, and corresponding location estimates obtained using trilateration, GRNN, 
and C-GRNN methods. Figure  8 illustrates the comparison of location estimations with 
C-GRNN, GRNN and trilateration techniques. In order to better compare the results of 
case I, case II, and case III, the same color combination of markers is used to plot the simu-
lation results. The red square indicates 35 actual target locations during its motion, whereas 

Fig. 7   Comparison of regression in y coordinate Estimation for GRNN, and C-GRNN (case I)

Fig. 8   Comparison of Target Location Estimations using Trilateration, GRNN and C-GRNN (case II)
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Fig. 9   Plot of Localization Errors in Target Location Estimation using Trilateration, GRNN and C-GRNN 
(case II)

Fig. 10   Comparison of regression in x coordinate Estimation for GRNN, and C-GRNN (case II)

Fig. 11   Comparison of regression in y coordinate Estimation for GRNN, and C-GRNN (case II)
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blue plus, black plus, and green plus symbols are the location estimations with trilateration, 
GRNN, and the proposed C-GRNN architecture respectively.

By comparing Fig. 8 (case II) with Fig. 4 (case I), it can be concluded that as the meas-
urement noise in RSSI is doubled, the localization errors are also increased. However, 
significant rise in localization error can be noted down in case of trilateration only (See 
Table  5). The % rise in localization error with C-GRNN is lowest as compared to that 
with trilateration and GRNN. Figure 9 plots average localization errors with trilateration 
GRNN, and C-GRNN. The average localization error with trilateration varies between 0 m 
to approximately 200 m, which is approximately 20 times higher than that with rest of the 
two algorithms. Figures 10 and Fig. 11 plot regression of x and y coordinates of actual tar-
get locations and corresponding x and y estimations of GRNN, and C-GRNN respectively. 
It can be seen that the R values obtained with the proposed C-GRNN algorithm for x and 
y estimations are better than that obtained with GRNN algorithm (See Table  6). Speak-
ing about the efficacy of the proposed C-GRNN algorithm as compared to our previous 
GRNN for Case I (Refer Table 4), it is observed that average RMSE, and average localiza-
tion error for the proposed C-GRNN algorithm are decreased by 12%, and 20% as com-
pared to GRNN. Whereas, average RMSE, and average localization error for the proposed 
C-GRNN algorithm are decreased by 20%, and 34% as compared to GRNN for Case II 
(See Table 5). Thus, by comparing this statistic obtained from Case I and Case II, it can be 
firmly concluded that as the proposed C-GRNN better deals with our previously published 
GRNN architecture in the context of indoor target L&T.

5 � Conclusion

This paper presents an improved GRNN architecture named as C-GRNN. The proposed 
C-GRNN architecture yield more accurate location estimates as compared to GRNN as 
well as trilateration in the context of dynamic RF channel and non-linear system dynam-
ics for the problem of indoor L&T of a mobile target. In order to realize uncertainty in the 
noise in RSSI measurements, the normal random variable parameter in LNSM path loss 
model is varied from 3 to 6 dBm in the steps of 3 dBm during simulations. The exten-
sive simulation results indicate that the proposed improved trilateration-based C-GRNN 
architecture demonstrate superior localization performance as compared to trilateration as 
well as GRNN architecture. Although we do not claim that the C-GRNN architecture has 
offered the ultimate answer to all of the research questions related to RSSI based indoor 
target L&T, according to our opinion, it offers few interesting insights on the indoor L&T 
domain. Fusing the proposed C-GRNN architecture with KF framework under the same 
conditions of environmental dynamicity to further refine localization accuracy will be a 
research objective of our future work.
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