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Keywords: Automatic water body extraction from satellite images of various scenes is a classical and challenging task
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option for performing image segmentation task in remote sensing applications. However, CNN-based networks
have non-trivial issues for segmenting such as: (1) blurring boundary pixels; (2) large number of trainable
parameters; and (3) huge number of training samples. In this paper, we propose an end-to-end multi-
feature based CNN architecture, called as W-Net, to perform water body segmentation. W-Net consists of
contracting/expanding networks and inception layers. W-Net takes advantage of contracting network to
capture context information while localization is achieved with expanding network. With these networks,
W-Net is able to train on less number of images and extract water pixels accurately. Use of inception layers
reduces computational burden within the network by decreasing total number of trainable parameters. W-Net
incorporated two refinement modules to enhance predicted results which mitigate blurring effect and to inspect
continuity of boundary pixels. Dataset consisting 2671 images with manually annotated ground truths are built
to validate performance and effectiveness of our proposed method. In addition, we evaluated our method on
crack detection dataset where W-Net achieved competitive performance with Deepcrack. W-Net accomplished
excellent performance on the water body dataset (I/U = 0.9434 and F — score = 0.9509).

1. Introduction result, traditional methods based on water body indexes [2-5] lead
to problem of misclassifying water pixels as non-water pixels and

Water resources such as ocean, rivers, lakes, streams and reservoirs inaccurately identify boundary pixels due to tedious task of selecting
are important in preserving and controlling various life sources in and threshold. In last few years, use of convolutional neural networks
around ecosystem [1]. Rapid urbanization is accelerating change and (CNN) has tremendously increased for various application in remote
damage to available water resources. To conserve and take benefit sensing [6-11]. Many researchers have worked on salient object de-

from available water resources, constant monitoring and proper survey
is necessary for getting information about water bodies [1]. Manual
survey provides trustworthy information but is costly in terms of man-
power and is time consuming process. In recent years, advancement
in remote sensing has made it possible to use information recorded by
different sensors on-board of satellite in timely manner. These factual
knowledge is widely used for various applications including extracting
information about water bodies.

For remote sensing imagery, water body extraction is aimed to dis-
criminate water bodies from other non-water body structures. Satellite
images are more complex in nature which consist of other information
including man-made structures, forest, snow, barren lands and so on
which makes water body extraction difficult and challenging. As a et al. [22] worked only with images having sea and land structures

tection (SOD) to locate noticeable and eye-catching object regions in
images [12-16] and videos [17,18]. Recently, the accuracy of SOD
has been improved extensively due to advancement and use of deep
CNN. SOD aims at identifying individual object instance in the detected
salient region while segmentation of water body is performed on whole
image. CNN have been widely used and have achieved great success in
SOD [12-18].

Recently, there have been use of CNN in extracting water bodies
using satellite images as those reported in [19-23]. As disparate water
bodies exhibit different spectral characteristics, it is difficult to design
adaptable method to deal with water bodies in various scenes. Li
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in same scene whereas [23] deals with raw Landsat images at once
which required high-end computing facility. CNN-based architectures
like [24-26] often resulted in blurred output and generally failed
in discriminating objects which resulted in degraded segmentation.
These architectures have huge amount of trainable parameters. Water
body extraction methods based on CNN provide high accuracy but
are still not in practical use because of huge requirement of relevant
datasets and high computational complexity due to large number of
trainable parameters. CNN based methods performed better than index
based methods but extraction of water body accurately and preserving
boundary pixels remains a challenge.

In this paper, we propose a water body extraction system (W-
Net) based on deep CNNs which accurately extracts water pixels and
preserves continuous boundary pixels. To verify and enhance the water
body extraction and boundary pixels, two refinement modules are im-
plemented on predicted images. W-Net requires less number of training
images and produces accurate segmentation. To deal with computa-
tional complexity of the architecture, asymmetric convolutions are used
to reduce trainable parameters. The main contributions of our proposed
method are summarized as follows.

1. We propose an end-to-end multi-feature CNN architecture for
extracting water bodies, named W-Net, for segmenting water
pixels from non-water pixels.

2. Inception blocks are added at both contracting (encoders) path
and expanding (decoders) path so as to aggregate features ex-
tracted at different scales using asymmetric convolutions.

3. Computational complexity within the network hugely depends
on total number of trainable parameters. To reduce these train-
able parameters, we use asymmetric convolutions which made
our network as sparse and more refined architecture.

4. The refinement modules are used not only for enhancing pre-
dicted images but also assist in examining continuity as well as
discontinuity of boundary pixels of water body. In addition, re-
finement modules pull out non-water pixels which are predicted
as water pixels and are not identified prior.

5. W-Net shows its potency and robustness by showing impres-
sive results on differing datasets. We validated W-Net on crack
detection dataset without fine-tuning.

The remainder of this paper is organized as follows. In Section 2,
we review recent related work. The proposed W-Net architecture is de-
scribed in Section 3. Section 4 gives details about experiments, includ-
ing implementation steps, dataset, metrics and cross-dataset evaluation.
We conclude our work in Section 5.

2. Related work

Over the past decades, a series of approaches have been published
for extracting water bodies for remote sensing data. Most commonly
used approach for water body extraction is based on water spectral
indices. One of the most well-known approach is normalized difference
water index (NDWI) [2,3] which makes use of near-infrared band
(NIR) and visible green band of Landsat imagery to extract water
bodies. However, this approach limits itself in extracting water bodies
within the complex scenes. Xu [4], proposed modified NDWI (MNDWI)
index in which NIR band was replaced by mid-infrared (MIR) band of
Landsat imagery. After enhancement of water features, water bodies
were separated by using threshold value. The selection of the optimal
threshold value is very difficult and varies from less complex to more
complex scenes. Feyisa et al. [27], presented automated water extrac-
tion index (AWEI) which makes use of multiple bands. However, result
for complex scenes were not up to the mark and manually optimal
threshold value was selected based on commission and omission error
rate. To overcome these limitations of above index-based methods,
Guo et al. [5], recommended use of weighted NDWI (WNDWI) which
provided higher overall accuracy (OA) by adopting two different ways
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of selecting the optimal threshold value. All above index-based methods
for extracting water bodies show good results but still selecting optimal
threshold value remains a challenging task.

To overcome drawbacks of these index-based methods researchers
[28,29] had worked on spatial features for extracting water body by
using neighbourhood features of the centre pixel. Huang et al. [30],
presented two level machine learning framework for extracting water
bodies in high-resolution (HR) remote sensing images. Here, at first
level, water bodies were extracted at pixel level, at second level,
water body types were identified by using geometrical and texture
features. However, pixel level extraction of water bodies may lead to
errors due to manually selected threshold. Yao et al. [31], discussed
automated urban water extraction method (UWEM) which combined
water index with building shadow detection method. Wu et al. [32],
preferred combining urban water index (UWI) for water body detection
and urban shadow index (USI) for removing the shadow pixels from
extracted water bodies. In both the cases [31,32] threshold was decided
by using support vector machine (SVM), statistical learning technique
followed by building shadow detecting method. These approaches were
restricted to extract water bodies from urban scenes and cannot be
treated as general method for scenes exhibiting different spectral and
spatial characteristics.

In recent years, deep learning frameworks (DLF) has obtained a
great attention in research community. DLF has been successfully used
in various applications of remote sensing [33]. Long et al. [26], per-
formed semantic segmentation based on fully convolutional networks
(FCN). In FCN, each decoder up-sampled its feature map which was
combined with analogous encoder feature map to yield the input to
next decoder. Due to large size of FCN, training was performed at
different levels. As number of convolution and pooling operations was
large, at different levels, convolution layers obtained variety of relevant
features. Zheng et al. [34] suggested use of conditional random fields
(CRF) with re-current neural network (RNN), collectively called as CRF-
RNN. The predictive performance of FCNs is enhanced by CRF-RNN at
the cost of fine-tuning on huge dataset [35]. Further, Lin et al. [36]
tried to improve FCNs by introducing task partitioning model for ship
detection while in [37] multi-scale semantic labelling scheme was
introduced for sea-land-ship segmentation. Li et al. [20], presented
FCNs for water body extraction in very high resolution images by
analysing thirty six combination of various parameters and selected
the best-FCN model. However, this best-FCN model was restricted in
many ways such as: extraction of narrow rivers, tested only on Gaofen-
2 images with 0.8 metre spatial resolution, and use of scenes which had
only flat terrain.

All above FCN networks under-segments boundary pixels of wa-
ter body. To deal with misclassification of boundary pixels, Miao
et al. [19] suggested restricted respective field deconvolutional network
(RRF DeconvNet) for water body segmentation. Iskdogan et al. [38],
recommended use of DeepWaterMap architecture which can discrimi-
nate water body from snow/ice, shadow and clouds. This model was
trained on Landsat imagery and showed significant results. However,
DeepWaterMap failed in segmenting very high resolution images of
urban areas. Iskdogan et al. [23], proposed modified version of Deep-
WaterMap, namely DeepWaterMapV2 which was memory efficient for
larger size inputs but totally ignored computational burden (total num-
ber of trainable parameters are over 37 million) within the network. In
addition, it was tested and reviewed only on Landsat images. Cheng
et al. [39], advocated structured edge network (SeNet) for sea-land
segmentation by integrating DeconvNet [40] with structured edge net-
work and showed impressive segmentation resulted along with edge
map. However, SeNet greatly depended on large number of anno-
tated data. Badrinarayanan et al. [25], proposed SegNet for image
segmentation which was based on encoder (down-sampling) and de-
coder (up-sampling) architecture and reduced trainable parameters to
great extent. Ronneberger et al. [24], came up with network (Unet)
constructed on encoder-decoder architecture and was used for different
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Fig. 1. An illustration of the W-Net architecture. In this architecture, there are five encoder unit (EU, dark blue), five inception down unit (IDU, light blue), bottleneck unit (BU,
grey), five decoder unit (DU, light red), five inception up unit (IUU, dark red) followed by convolutional layer. Refinement modules are applied on predicted images to improve

its quality.

biomedical segmentation applications based on semantic pixel-wise
labelling. In Unet, data augmentation was performed excessively by
applying elastic deformation on training images which permitted the
network to learn invariance to deformations. Therefore, precise seg-
mentation results were achieved even though Unet was trained on very
few images.

Further, many researchers came up with different variants of U-net
for various application in remote sensing such as classification [41,42],
building detection [43-45], road detection [46-48] and water body
extraction [21,23,49]. Feng et al. [21], proposed deep convolutional
encoder-decoder (DCED) architecture for water body extraction from
very high resolution images. However, Deepunet model predicted re-
sults which suffered from blurring boundary pixels of water body due
to up-sampling. To mitigate this blurring effect, fully connected CRF
(FCCRF) model was employed [50]. Due to smoothing phenomena, FC-
CRF failed in preserving local structure information of water body and
its boundary pixels [50]. To overcome this problem, regional restriction
(RR) was used which improved prediction with enhanced water body
boundaries. Gonzalez et al. [49], suggested water body segmentation by
using TernausNet [43]. In which knowledge transfer-based model was
used in-order to map high resolution labelled images with very high
resolution images. Due to different distribution of spectral and spatial
features of high resolution and very high resolution images, prediction
results are not desirable. Apart from this issue, model failed to perform
segmentation at several occasion including improper segmentation of
scenes with water body having different spectral features. Further,
knowledge-transfer from high resolution to very high resolution images
did not improve the efficiency and performance of the segmentation.
Most of the above mentioned architecture showed admirable perfor-
mance but at the cost of large number of trainable parameters which
increased computational complexity. Therefore, the proposed W-Net is
motivated by Ronneberger et al. [24], Szegedy et al. [51], Szegedy
et al. [52] and successfully compete with other methods by its excellent
performance.

3. Proposed method

In this section, we present detail architectural description of our
proposed method. Further, we will explore inception layers which
improved the performance and mitigated computational complexity
within the network.

3.1. W-Net architecture

In this section, we formulate water body segmentation (W-Net) as a
binary image labelling task, where “1” and “0” refer to “water pixel”

and “non-water pixel”, respectively. This task requires high level and
low level features [53]. Fig. 1, illustrates the overall architecture of the
proposed W-Net. It performs two tasks: convolution and deconvolution,
which resembles encoder-decoder model. W-Net is computationally
efficient and aggregates hierarchical attributes obtained from multiple
convolutional layers.

As shown in Fig. 1, encoder unit (EU) and inception down unit (IDU)
are more or less symmetric to the decoder unit (DU) and inception
up unit (IUU), respectively. The network is W-shaped architecture
and represents water body extraction, hence, named as 'W-Net’. W X
H x C (width, height and number of channels) represent dimensions
of the image. Each EU and DU are connected to its corresponding
inception unit (IDU and IUU), respectively through solid blue lines.
The skip connections are also added from the IDU to IUU and denoted
by solid-dash red lines. Fifth IDU is connected to corresponding DU
through bottleneck unit (BU). The EU down-samples the input image
and the IDU is inserted after each EU. BU outputs feature maps whose
dimensions are same as its input. DU up-samples the input image and
IUU block is added after each DU preserving the size of feature maps
throughout the network. The final output of IUU is passed through
sigmoid followed by refinement modules for final binary output. To
improve quality of predicted image, we incorporated two refinement
modules.

3.2. Structure of EU, IDU and BU

Fig. 2(a), (b) and (c) illustrate detail structure of EU, IDU and
BU, respectively. Each EU consists of two 3 x 3 filter convolutional
layers followed by a max pooling layer with 2 x 2 filter and stride of
two (Fig. 2(a)). Here, each convolutional layer is comprised of convo-
lutional operation (conv2D), batch normalization (BN) and Rectified
Linear Unit (ReLU) [54,55]. BN is used to mitigate internal covariant
shift and avoid overfitting problem [55]. To learn a non-linear task,
avoid saturation and induce sparsity during learning process [56], ReLU
(activation function f(x) = max(0, x)) is used. The pooling layer with
2 x 2 pixel filters is used to carry out spatial pooling along with down-
sampling the input image by a stride of two. The filter channels are
increased by factor of two after each EU. In [43-45], variants of U-net
using VGGNet [57] were proposed for image segmentation. All these
variants have fascinating feature of architectural simplicity but at the
cost of high computational complexity and memory requirements. Li
et al. [58,59] tried to alleviate computational complexity but reducing
total number of trainable parameters remained as a challenge. This is
due to use of 3 x 3 receptive field size in convolutional layers. In W-
Net, we introduced use of inception block i.e. IDU and IUU after each
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Fig. 2. An illustration of: (a) EU, (b) IDU, and (c) BU.

EU and DU to reduce number of trainable parameters which relieved
computational burden during training of the network.

The proposed W-Net consists of two different inception units: five
IDU corresponding to five EU and five IUU corresponding to DU,
respectively as shown in Fig. 1. The feature map yield by EU is given
as input to its analogous IDU. Fig. 2(b) shows detail structure of IDU.
Each convolutional layer in IDU consists of conv2D and ReLU. The
max pooling layer with 3 x 3 filter is for spatial pooling with stride
of one followed by conv2D with 1 x 1 filter. Therefore, we performed
spatial factorization of 3 x 3 filter conv2D into 1 x 3 filter conv2D
followed by 3 x 1 filter conv2D using asymmetric convolutions [52].
Similarly, 5 x 5 filter conv2D is replaced by two 3 x 3 filter conv2D and
then depth-wise separable convolutions on each 3 x 3 is performed as
shown in Fig. 2(b). Use of depth-wise separable convolutions reduces
computational cost within the network which results in less number
of trainable parameters and faster training of the network [52]. In
our case number of trainable parameters during training are 10.33
million which is significantly less as compared to [22,24,59]. Here,
1 x 1 convolution has dual-purpose, one for dimensionality reduction
for efficient computing before asymmetric convolutions and second
use of non-linear activation (ReLU) which allows W-Net to learn more
complex function. Then the feature maps from multiple branches (at
different scales) are aggregated to form single-output feature map and
given as input to next EU. The output of fifth IDU is input to BU whose
detail structure is shown in Fig. 2(c). BU consists of two 3 x 3 filter
convolution layers with same spatial resolution followed by first DU.

3.3. Structure of DU and IUU

Fig. 3(a) illustrates detail structure of DU. Each DU up-samples the
feature map to that of input image followed by 3 x 3 filter transpose
convolutional layer. Here, each transpose convolutional layer consists
of convolutional operation (conv2DT) and ReLU. Then the up-sampled
feature map is given as input to IUU followed by next DU. The only
difference between IDU and IUU is the use of transpose convolutional
layer instead of convolutional layer as shown in Fig. 3(b). The final
feature map generated by fifth IUU, same size to that of input image,
is applied to output convolutional layer with 1 x 1 filter conv2D and
sigmoid activation function.

3.4. Asymmetric convolutions

Fig. 4 illustrates the total number of parameters generated by dif-
ferent convolutions with variable filter size. Values marked with red

colour represents parameters at individual convolutions while green
colour denotes total number of parameters of the layers. 256 x 256 x 3
is the size of the input image while 128 x 128 x 3 is the image after
applying variable filters (f) with stride (s). Fig. 4(a) demonstrates use
of 5 x 5 convolution which will result in total 608 learnable elements.
Learnable parameters are calculated using ((m X n X ¢ + 1) X k). where,
m and n are width and height of the filter, respectively. ¢ and k are the
number of filters used in previous layer and current layer while 1 is the
bias term for each filter. With suitable factorization of convolutions, we
can achieve disentangled parameters which will allow our network to
train faster [52]. Also, only increasing the network depth-wise will not
ensure the performance of the network. Hence, balancing the number
of filters per stage and the depth of the network can contribute towards
improved performance of the network. Therefore, we replace 5 x 5
filter convolution with two 3 x 3 convolutions as shown in Fig. 4(b)
(expanding the network width-wise). It can be observed that the learn-
able elements at individual convolutions (3 X 3) are 224 and total
number of parameters are 448. This clearly show that, factorizing the
convolutions can decrease number of trainable parameters to increase
computational efficiency within the network. Further, in Fig. 4(c) we
factorize each 3 x 3 convolutions by using asymmetric i.e. 1 x 3 and
3 x 1 convolutions. The number of trainable parameters at individual
convolutions using asymmetric convolution is 80 while total number
of trainable parameters are 320. This setup clearly reduces the total
number of parameters by almost 52.63% with two prior setup of 5 x 5
and 3 x 3 convolutions.

3.5. Refinement modules

Two refinement modules are applied to predicted images: contrast
stretching for enhancement and Gaussian filtering (refinement module
one) followed by Canny edge detection [60] to obtain edge information
(refinement module two). Fig. 5(a), (b), and (c) show input image,
ground truth, and edge mask, respectively.

Fig. 5(d) shows predicted image obtained using W-Net which is en-
hanced using refinement module one to get filtering output (Fig. 5(e)).
The enhancement factor for refinement one was set to 4.0 while the
sharpness factor was set to 50.0 for all the test images. Thereafter, these
enhanced images are smoothened by using filter of size 3 x 3 and 5 x 5.
Further, filtering output is given as input to refinement module two
to get the edge output image (Fig. 5(f)). Identifying boundary pixels
for water body is crucial and important. During refinement module
two, non-relevant pixels are flagged as weak boundary pixels while
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(c) (d)

Fig. 6. Illustration of generating image patches and their ground truths from raw Landsat —8 images. Each column presents: (a) raw input images, (b) cropped images with region
containing water body, (c) image patch with dimension 256 x 256, and (d) ground truth images.

relevant pixels are flagged as strong boundary pixels for identifying the
boundary of the water body. The advantage of refinement modules is to
make the predicted image visually appealing and sharpen the image to
investigate edge information for further analysis. In edge output image
we can effortlessly identify and audit misclassified boundary pixels.

4. Experiments

To demonstrate the efficiency and performance of the proposed W-
Net, we evaluated it qualitatively as well as quantitatively on Landsat
—8 images. Furthermore, we validated robustness of the presented
W-Net by conducting cross-dataset evaluation. In addition, we also
examined W-Net through ablation study.

4.1. Implementation

W-Net is trained using publicly available tensorflow [61]. The
model parameters that are tuned for W-Net: input image of size (256 x
256 x 3), the ground truth (256 x 256 x 1), batch size (2) with number
of epochs (200) and optimizer (Adam) [62] with the learning rate
(le —4). First, we performed data augmentation like image translation,
rotation, flipping, etc. on each patch [63]. We trained W-Net with
augmented data having (256 x 256 x 3) dimensions. Convolutional and
deconvolutional layers of IDU and IUU take a random initialization
weight based on [64]. Most of the existing networks perform semantic
segmentation with multiclass labelling [35,43,44,65]. Isikdogan et al.
[23], Yang et al. [48], Liu et al. [58] aimed to distinguish two classes
but with distinct datasets, which are different than our dataset. On
account of this reasons we trained W-Net efficiently without exploiting
any pre-trained models. All experimental work is carried out using
Intel(R) Xeon(R) CPU E5-2695V4 at 2.10GHz with 64GB RAM and
NVIDIA TITAN Xp with 12GB GDDR5X (Micron) memory, CUDA 9.1
edition.

4.2. Data

Many existing networks were trained and evaluated on specific
dataset recorded from various sensors to prove its efficiency. Isikdogan
et al. [23,38] used Landsat —8 images for training and testing model,
Cheng et al. [39] used natural-colour images from Google Earth, Kim
et al. [42] used aerial images, Gonzalez et al. [49] used Sentineal-
2 images. Therefore, it is very difficult to compare different models
on same dataset. To make the comparison easy, we collected several
images from USGS' of Landsat —8 (Operational Land Imagery (OLI)

1 USGS: https://earthexplorer.usgs.gov/

sensor) satellite which are with 30 metre multi-spectral, spatial reso-
lutions along a 185 km swath. Landsat —8 OLI sensor produces nine
bands in the spectrum of visible light and Near Infrared. The reflectance
spectra for water body is exhibited highly in band 2, 3 and 4 of
Landsat —8 OLI sensor. Therefore, we selected combination of three
bands which include band 2, 3 and 4 for our experimentation. The
original Landsat —8 images are of high dimensions i.e. typically of
7751 x 7891 x 3 and require high-end computation for processing.
To avoid high computations within the network, we created patches
of 256 x 256 dimensions. We selected region (yellow bounded box)
within raw images which comprises variety structures of water bodies
as shown in Fig. 6(a). Then we cropped the selected region containing
water body as shown in Fig. 6(b). Finally, non-overlapping patch of
dimension 256 x 256 (Fig. 6(c)) is cropped which is given as input
to the network. In the similar way, total 2671 non-overlapping patches
are created along with their ground truths (Fig. 6(d)) using GIMP tool.?
Many images are purposefully selected which consist of shadows and
mountain ridges to make the dataset more challenging. The dataset
also included images with narrow and wider river-structures and sea—
land structures. The dataset consists of non-overlapping 2071 training
images, 500 validation images and 100 testing images.

Fig. 7 and Fig. 8 shows some representative samples from the
dataset along with ground truth and edge mask, respectively. We
purposefully selected these samples such that scene contains river-like
(narrow and wider) structures and non-river structures such as sea—
land scenes, island scenes, in-island scenes, and river-bed scenes. All
the ground truths are manually annotated (Fig. 7(b), (d), and (f)) while
edge masks are created from ground truths using [60] (Fig. 8(b), (d),
and (f)).

4.3. Evaluation metrics

We evaluated performance of the proposed W-Net on our estab-
lished water body dataset. To measure the performance of W-Net,
we introduced three common metrics which are used for semantic
segmentation: global accuracy (G), class average accuracy (C) and
mean intersection over union (I /U) [26]. G measures the percentage of
the pixels predicted correctly and C denotes predictive accuracy over
all classes calculated using (1), (2), (3).

G:Zmii/Zni (€]

2 GIMP Tool: https://www.gimp.org/
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Fig. 7. Sample input images and their ground truths. In each column we present: (a), (c), and (e) with input images, (b), (d), and (f) with manually annotated ground truths.
Samples are chosen carefully so that they contain both non-river structures (columns (a) and (e)) and river-like structures (column (c)).

Fig. 8. Sample input images and edge masks. In each column we present: (a), (c), and (e) with input images, (b), (d), and (f) with edge masks. All the edge masks are created

using ground truths.
1 m;;

I/U = L) . Ma 3
/ <mc ,Zn[+2imji_mii ®
Here, m;; is the number of pixels of the class i predicted to be the class
Jj, m, are different classes, and »; is number of pixels of the class i
including both true positive (TP) and false positive (FP).

In addition, three common metrics preferred in water body extrac-
tion field are also used to assess the semantic segmentation which are
computed using (4), (5), (6).

TP
Precision(P) = ————— 4
recision(P) TP+ TP (@)
TP
Recall(R) = ———— 5
ccall® = 75 FN )
2PR
F — F)= 6
score(F) R+ R 6)

Here, TP, FP and FN represents the number of true positives, false
positives and false negatives, respectively.

4.4. Evaluation
The proposed W-Net is compared with Unet [24], Deepunet [22],

DeepWaterMapV2 i.e. DeepWMV2 [23] and Deepcrack [59]. All net-
works used for comparison are fine-tuned on water body dataset.

Fig. 9 demonstrates comparison of state-of-the-art methods with
proposed W-Net. Compared with other architectures, W-Net shows
prominent performance. The predicted images obtained using Unet
appear blur as compared to other methods. Deepunet performs slightly
better than Unet but leads to pixel misclassification. However, Unet
works better with scenes having non-river structure leading to less
misclassification of pixels than scenes consisting river-like structures.
Deepcrack is originally modelled for crack detection which leads to the
facts that the river-like structures are segmented but shows very poor
performance in identifying scenes having non-river structures. These
indicates that low-level layers represents local features with smaller
receptive fields while deeper layers increases false positives (non-water
pixels) in scenes containing non-river structures. DeepWMV2 works
better with images holding non-river structures while shows inferior
performance with scenes having river-like structures. It fails to discrim-
inate shadow and elevated mountain ridge (yellow bounded box) from
water pixels as seen in Fig. 10. These pixels (shadow and mountain
ridge) are either treated as water pixel or non-water pixels, in above
case it is treated as non-water pixels. For scenes comprising of non-river
structures, DeepWMV2 misclassified the land pixels as water pixels as
shown in Fig. 11(a) while W-Net captures land pixels as non-water
pixels as shown in Fig. 11(b).

Fig. 12 shows predicted images, filtering outputs and edge outputs
after applying refinement one and two. Here, we have considered two
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Fig. 9. Results on several samples. Each row presents: (a) input image, (b) ground truth, (c) Unet [24], (d) Deepunet [22], (e) Deepcrack [59], (f) DeepWMV2 [23], and (g)
proposed W-Net.

Fig. 10. Results on three samples with river-like structures. In each row we present: (a) input images and (b) predicted images obtained by DeepWMV2. Yellow bound boxes
show elevated mountain ridge in both input images and predicted images.

sample images i.e. input image 1 and input image 2 randomly selected In Fig. 12, each row (a)-(e) corresponds to Unet, Deepunet, Deep-
from dataset. First two columns represent predicted images, third and crack, DeepWMV2 and proposed W-Net, respectively. It is evident that
fourth columns denote output of refinement one (filtered output), fifth after applying refinement one blurriness is considerably decreased in
and sixth columns show edge output after applying refinement two. case of Unet. For Deepunet and W-Net, predicted images are visually
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Fig. 11. Results on two samples with non-river structure. Blue circle shows misclassified land pixels as water pixels while orange circle shows correctly classified non-water pixels.
In each row we present: (a) predicted images acquired from DeepWMV2 and (b) predicted images obtained by proposed W-Net.

Table 1 Table 2

Comparison of methods with number of layers and trainable parameters. Comparison of methods based on metrics for predicted images.
Networks Layers Trainable parameters Running time Methods Metrics
Unet [24] 23 31.03 236 G C 1/U P R F
Deep““etk[zz] 82 124.44 469 Unet 0.0465 09693  0.8223 07061  0.6824  0.8277
Deeperack [59] 23 14.72 176 Deepunet 09717  0.9838  0.8937 08199  0.8404  0.9010
DeepWMV2 [23] 20 37.21 259 Deeperack 05522 07431 03546 02231 02113  0.3648
W-Net (proposed) 23 10.33 103 DeepWMV2 07592  0.8618  0.5359  0.3481  0.3835  0.5164

Note: Trainable parameters are in million while running time in milliseconds. W-Net 0.9847 0.9912 0.9381 0.8881 0.8991 0.9469

DeepWMV2 denotes DeepWaterMapV2. Bold black font denotes best values.

appealing and boundary pixels are sharp. For Deepcrack and Deep-
WMV2, refinement one achieved higher rate of identifying non-water
pixels as water pixels which resulted in increased number of false
negatives. As seen in Fig. 12(c), Deepcrack works well with images
having river-like structure (predicted image 2 and filtered output 2) as
compared to predicted image 1 and filtering output 1. Here, number
of false negatives are less than [23]. Refinement two is applied on
filtered output to get boundary information as shown in Fig. 12 (fifth
and sixth columns). Fig. 13 shows edge output and we can visually
identify continuous boundary pixels except for Unet (shown by red
circle). Yellow bounded boxes show misclassified non-water pixels as
water pixels in case of Unet and Deepunet which are very difficult to
identify from predicted images. Fig. 13(c) shows no misclassification
for proposed W-Net. Above reasoning shows that both the refinement
modules help in performing in-depth analysis for misclassified pixels
and identifying boundary pixels.

Table 1 presents comparison on the basis of number of convolu-
tional layers used and total trainable parameters with running time.
DeepWMV2 uses less number of layers (20) as compared to other
networks but the total number of trainable parameters generated are

Note: Best performances are highlighted by bold black font. W-Net is the proposed
network.

still huge (37.21 million). This is because of its input image (Landsat
—8) which consist over 300 million pixels per scene. Table 1 indicates
that W-Net is not only light weighted but also fast architecture. Table 2
shows comparison for performance metrics of different networks on
our testing dataset. Here, we calculated the G, C, I/U, P, R and F
for predicted images. Table 2 clearly specifies that the pixel accuracy
for predicted images of proposed W-Net exceeds by 0.4325 when
compared with Deepcrack while Deepunet shows good performance
with minimum difference of 0.0074. The predictive accuracy over all
classes is observed highest for W-Net i.e. 0.9912 when compared to
Unet, Deepcrack and DeepWMV2 with difference of 0.0382, 0.2481
and 0.1294, respectively. Deepcrack performs worse as it is designed
for crack detection and fails in segmenting non-river structures while
capturing only river-like structures which are similar to those of crack
structures.

Table 3 presents the quantitative analysis after applying refinement
modules one. For Unet and Deepunet slight improvement is observed
but after refinement one, misclassified non-water pixels are identified
as water pixels. Deepcrack and DeepWMV2 deteriorates their perfor-
mance as both networks work better either with non-river structures
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Fig. 12. Results on two samples, input image 1 and input image 2. First and second columns show predicted images, third and fourth columns show filtering outputs (refinement
one) and last two columns show edge outputs (refinement two). Each row present : (a) Unet, (b) Deepunet, (c) Deepcrack, (d) DeepWMV2, and (e) proposed W-Net.
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Edge Outputs

Filtered Image 2 Edge Output Image 1  Edge Output Image 2

uaua.
uaua.

Fig. 13. Results of refinement module two. Yellow bounded boxes show misclassified land pixels as water pixels while red circle shows discontinuous boundary pixels. (a) edge
output generated by Unet, (b) edge output generated by Deepunet , and (c) edge output obtained by proposed W-Net.

or river-like structures. While comparing predicted images after refine-
ment one, noticeable changes are observed. When predicted images are
compared with filtering output for DeepWMV2, significant difference
of 0.3714, 0.4531 and 0.2057 is observed for metrics G, C and I /U,
respectively. Quantitative values (P, R and F) provided by Table 3 con-
firm that the higher non-water pixels were predicted to be water pixels
which endorse our qualitative analysis for DeepWMV2. The predicted
image is compared with filtering output for proposed W-Net, prominent
improvement is reflected in statistical information (G = 0.9899, C =
0.9964, I/U = 0.9434, P = 0.8901, R = 0.9018, F = 0.9509). The
quantitative investigation indicated in Table 3 compliments qualitative
analysis made through Fig. 12. Statistics presented by Tables 2 and
3 clearly recommend that except for Deepcrack and DeepWMV2 all
other methods show significant improvement and take full advantage of
refinement modules. Hence, with qualitative and quantitative analysis,
it is proved that our proposed W-Net is superior to other methods.

Table 3

Comparison of methods based on metrics for images after refinement modules.
Methods Metrics

G C 1/U P R F

Unet 0.9899 0.9731 0.8519 0.7063 0.6998 0.8298
Deepunet 0.9801 0.9899 0.9003 0.8214 0.8497 0.9099
Deepcrack 0.7634 0.8699 0.5398 0.3491 0.3799 0.5113
DeepWMV2 0.3878 0.4087 0.3302 0.1865 0.1926 0.2388
W-Net 0.9971 0.9964 0.9434 0.8901 0.9018 0.9509

Note: W-Net is the proposed network.

4.5. Cross-dataset evaluation

We have validated proposed architecture on crack detection dataset
used in [59]. Fig. 14 shows sample images from water body dataset

10
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Fig. 15. Result of Deepcrack on sample crack detection images. Each column present: (a) random input images chosen from crack detection dataset, (b) predicted images of
Deepcrack, (c) guided filtered output of Deepcrack, and (d) edge output from refinement module two generated from guided filtered output.

(Fig. 14(a)) and crack detection dataset (Fig. 14(b)). Fig. 15 displays
output of deepcrack when applied on crack dataset. Fig. 15(b), (c) and
(d), show predicted images, guided filter outputs and edge outputs,
respectively for Deepcrack. As we can see that narrow and wider river-
like structure are very much identical to that of thin and broader crack
images. Our proposed W-Net architecture is not fine-tuned with crack
detection dataset but trained with river-like structure images which are
similar to crack images. Taking advantage of such images, W-Net is able
to predict cracks which resemble to predicted images by Liu et al. [59]
as shown in Fig. 15. Fig. 16(d) and Fig. 16(e) display filtered output
of refinement module one and edge output of refinement module two,
respectively. With very few water pixels predicted as non-water pixels,
W-Net achieves competitive performance with [59].

4.6. Ablation study

We have proposed W-Net which includes inception units (IDU and
IUU). Here, we compare three variants of W-Net architecture with
U-Net. W-Net* with inception blocks (IDU) at encoder path without

1

—

inception blocks (IUU) at decoding path, W-Net** with inception blocks
(IUU) at decoder path without inception blocks (IDU) at encoder path
and W-Net with inception blocks (IDU) at encoder path as well as
inception blocks (IUU) at decoding path. Table 4 gives details about
number of layers and trainable parameters. It is obvious from Table 4
that number of convolution layers are same for both variants of W-
Net and U-Net. However, the number of trainable parameters in W-Net
is significantly less as compared to W-Net*, W-Net** and U-Net. This
is achievable due to use of asymmetric convolutions [52]. The pro-
posed W-Net architecture with inception layers at both encoding and
decoding path is light weighted than without inception layers.

Fig. 17 shows the comparison between variants of W-Net and U-
Net. The first row presents two input images (input image 1 and 2)
randomly chosen from dataset with their ground truths. Fig. 17(a)
(second row) speaks for U-Net which corresponds to output images
produced after refinement one and two. Fig. 17(b) (third row) and
Fig. 17(c) (fourth row) shows the output images produced after re-
finement module (refinement one and two) for W-Net* and W-Net**,
respectively. Fig. 17(d) (last row) represents W-Net showing output
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Fig. 16. Result of proposed W-Net architecture on cross-dataset evaluation on sample crack detection images. Each column present: (a) random input images chosen from crack
detection dataset, (b) ground truths, (c) predicted images of W-Net, (d) filtered outputs from refinement module one, and (e) edge outputs from refinement module two.

Input Image 1 Ground Truth Input Image 2 Ground Truth
\

Filtering Outputs Edge Outputs
Filtered Image 1 Filtered Image 2 Edge Output Image 1 Edge Output Image 2

(a)

*®
—

(b)

-

(c) P

(d) ’

Fig. 17. Results on two samples, input image 1 and input image 2. First and second columns show filtering outputs (refinement one) and last two columns show edge outputs
(refinement two). Each row present: (a) result images using U-Net, (b) result images using W-Net*, (c) result images using W-Net** and (d) result images using W-Net.
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Table 4
Comparison of W-Net and U-Net for total number of trainable parameters.

Networks Layers Trainable parameters Running time
U-Net 23 31.03 236
W-Net* 23 15.43 165
W-Net** 23 15.43 165
W-Net 23 10.33 103

Note: Trainable parameters are in million while running time in milliseconds. W-Net*
and W-Net** are variants of W-Net while W-Net is the proposed network.

Table 5

Comparison of W-Net and U-Net based on performance metrics.
Methods Metrics

G C /U P R F

U-Net 0.8918 0.9178 0.8715 0.8314 0.8457 0.8912
W-Net* 0.9411 0.9561 0.8943 0.8501 0.8666 0.9102
W-Net** 0.9623 0.9773 0.9149 0.8676 0.8789 0.9332
W-Net 0.9899 0.9964 0.9434 0.8901 0.9018 0.9509

Note: W-Net is the proposed network.

images after applying refinement one and two on both input images.
Fig. 17 indicates that W-Net is close to expected ground truth and
does not suffer from pixel misclassification. Pixel misclassification is
observed in U-Net, W-Net* and W-Net** (Fig. 17(a), (b) and (c)).
Boundary pixels are clearly identified in W-Net whereas U-Net, W-
Net* and W-Net** do not determine boundary pixels efficiently. Table 5
shows that W-Net increases the pixel prediction and predictive accuracy
by 0.0981 and 0.0786, respectively. W-Net has also amortized number
of false negatives comparative to U-Net. Tables 4 and 5 present the
comparison between W-Net with and without inception blocks. By
introducing inception layers, W-Net not only reduces the computational
complexity but also improves the overall prediction results. The qual-
itative and quantitative analysis demonstrate that W-Net is competent
and computationally cheaper than U-Net and its two variants.

5. Conclusion

We present an end-to-end multi-feature based architecture, named
W-Net, for extracting water pixels through segmentation. W-Net took
advantage of encoding and decoding path to hold context information
and localization, respectively. Large number of feature channels in
up-sampling layers allow the network to transmit context information
to high resolution layers which maintain consistency in segmenta-
tion. In addition, we incorporated inception layers after each encoder
and decoder units which resulted in reducing computations within
the network. Therefore, total numbers of trainable parameters are
reduced dramatically in W-Net. W-Net enforced two refinement mod-
ules. Refinement one has improved quality of predicted images by
reducing blurring effect while refinement two provides edge informa-
tion (locating continuity and discontinuity of boundary pixels). We
also evaluated W-Net on crack detection dataset where it showed
competitive performance by achieving results that resembles to anno-
tated maps. The qualitative and quantitative comparison reveals the
superiority of W-Net over the state-of-the-art methods.
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