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Abstract— According to World Health Organization
(WHO), cancer is the second major reason of death followed by
cardiovascular diseases. Early diagnosis of cancer is essential
to offer correct treatment to the patient. Traditional histology
based examination is used as the gold standard for cancer
identification but the accuracy of the result generated is
questionable and it may vary amongst pathologists. Next-
Generation Sequencing (NGS) technologies have produced a
huge amount of cancer genomic data publicly available which
elevates an idea of the identification of candidate genes
contributing to uncontrolled cell growth resulting in cancer.
Analyzing gene expression data is crucial to find out these
harmful mutations and to avoid further consequences.
Therefore there is a need for learning methods to explore this
data for discovery of target genes, accurate disease
identification and drug discovery. Despite research in cancer
detection using genome sequencing, there exists a need to
improve accuracy and find out driver mutations in genes. This
paper presents a systematic literature survey of in-depth
learning techniques used to predict cancer using genome
sequencing. The system can be used by medical practitioners to
have timely diagnosis & prognosis of diseases like cancer.
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I.  INTRODUCTION

In the digital world, the availability of medical data has
tremendously increased with higher volume and variety.
Genome sequencing and personalized medicine have
changed the way to treat a disease like cancer. In a traditional
method, pathologists need to manually identify changes in
genes by taking a reference of clinical literature which is
highly time consuming[1]. By knowing the genetic structure
of an individual, precise medical treatment can be offered.
This is vital for lessening the unwanted side-effects of
medicine resulting from the traditional one-size-fits-all
approach. It will also reduce the cost of treatment by offering
effective treatment plans based on an individual's risk score
& characteristics.

One of the features of cancer is uncontrolled cell growth
resulting into tumor. Finding cancerous cell variations from
genome data is crucial to predict cancer type. The genomic
profile contains a massive set of multidimensional data that
should be analyzed with an appropriate statistical method to
extract meaningful information. Research is also on-going on
the classification of cancer patients into a high grade or low
grade, whether cancer is progressing or deteriorating and to
predict drug response.[2] Challenges are there in the
transformation and representation of this genome sequence
data into a machine-readable format. Learning techniques are
used to learn patterns from this data which can be further
used for analysis, interpretation, and decision making.
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Therefore, there is a need for a system that enhances
accuracy in cancer prediction and provides personalized
medicine with no side effects in an individual. Thus,
resulting in substantial lifesaving of the patient. [3]

With the advent of the omics and non-omics data and the
integration of holistic healthcare records, Deep Learning
Algorithms are nowadays widely used in cancer prognosis
and diagnosis. In this review paper, we have reviewed
existing work related to deep learning used in building
predictive models for different cancer types. The review
paper is divided in six main sections. Section-II provides the
theoretical background of cancer and genomic profiles while
overviewing recent development in health informatics related
cases on cancer prediction Section- III lays out a generalized
health analytic system deployed for cancer detection and
prediction. Section- IV illustrates use of Deep Learning
techniques specifically for cancer prognosis & Section- V
outlines key challenges in applying deep learning algorithms
for cancer prediction. Finally, Section- VI gives insights on
potential limitations, practical implications, and future
directions for researchers interested in healthcare analytic
and genomic approaches to cancer prediction.

II. THE GENETICS OF CANCER

Genes are found in the DNA (DeoxyriboNucleic Acid) of
each cell in a human body. They control functions of a cell
like cell growth, division and lifetime. The DNA sequence
forms a gene and if any alteration is made in the precise
DNA sequence, then it incurs genetic mutation. A small
number of mutations may or may not be harmful but if found
largely then it can lead to cancer.[4]. Multiple mutations are
single nucleotide variants (SNVs), structural variations and
insertions or deletions (Indels). The mutation of genes in a
cell causes cancer. These driver mutations available in cancer
tumors are the root cause of rapid growth and spread of
cancer cells in the human body. Currently, the task of
differentiation is carried out manually, which is
tremendously time consuming and produces less accurate
results. In the traditional approach, these genetic mutations
are reviewed and classified by pathologists by concerning to
historical clinical literature. Cancer is a ghastly disease and
very often it does not announce itself in an early stage. With
the advanced Next Generation Sequencing (NGS)
technologies, a huge volume of cancer genome data is
generated. Decoding of such an enormous volume of data
leads to many opportunities and challenges to clinicians and
biologists for understanding cancer initiation, progression,
and development.

The genomic profile of an individual is used to
investigate the occurrence of certain diseases in an
individual. It identifies the genetic characteristics of a person
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and tries to discover the response of a person to a specific
drug. Genomic profiling can be used by doctors to diagnose
a patient with high-risk genetic variation causing a particular
disease. Advances in processing genome data using High
Throughput  Sequencing  techniques have replaced
conventional methods used in genomics. It is now possible to
investigate these genomic profiles using computational
approaches. Even biomarkers causing the particular discase
to emerge can be identified. They can be further used to
predict and evaluate the treatment responses and proves as an
indicator of any kind of disease. Though radical research is
on-going in the field of oncology, there is not a single test
that can accurately diagnose cancer. Also, the same drug is
not effective across people suffering from the same type of
cancer type. So the current trial and error based drug
treatment system incurs a lot of expenditure that demotivates
the patient. To avoid this, precision medicine can be used in
which personalized treatment can be offered to the patient
based on the genetic characteristics of an individual to know
the onset of the disease. Thus it will help mankind from an
adverse drug effect and thus resulting in significant
lifesaving and even cost-saving in treatment.

III. GENERALIZED CANCER PREDICTION
SYSTEM

Knowledge of changes in genes i.e. mutations plays an
important role in predicting cancer. There are two types of
mutations, first is acquired mutations caused by damage of
DNA in a cell contributed by various factors like lifestyle,
radon, UltraViolet (UV) radiation, genetic defects, gender
and age, etc. Second is germline variation which is hereditary
and occurs in spermor egg. The following figure shows the
general system architecture used for cancer prognosis using
Deep Learning Algorithms.
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Fig. 1. General steps in handling genome data using deep learning

A. Data acquisition

Massive amount of genomic data is available publicly in
databases like TCGA, NCBI, UCI, GeneBank, etc. These
datasets cannot be used directly for deep learning algorithms
as they are stored in fasta, fastq, gff2 format, which must be
converted in vector or matrix format. Proper preprocessing
techniques used in the initial stages of the model can

significantly increase accuracy and improve the speed of a
Deep Learning Algorithms. This phase comprises of
following three subphases:

1) Data cleaning: This aims at missing value
imputation, handling outliers, noise removal and removing
duplicate values. It is one of the important steps contributing
to a generation of accurate results because if data is not
cleaned properly then it may increase the cost of training a
model.

2) Data normalization: In normalization, values in the
numeric column are scaled up to a certain scale to avoid
local optima.

3) Dimensionality reduction: To remove unwanted
features for proper training, dimensionality reduction
techniques like auto-encoder and principal component
analysis can be used.

B. Data encoding

Generally genomic data is stored as three types of
sequences such as — DNA, RNA and amino acid sequences.
To encode this data in machine-interpretable format,
methods like one-hot encoding, position-specific scoring
matrix, point accepted mutation, blocks substitution matrix,
etc. are used. The output of this step is a normalized numeric
vector or matrix, which can be further fed as input to Deep
Learning Algorithms.

C. Model selection

So far, we don't have any model that performs well for all
types of problems. Instead of using a single model one may
integrate features of multiple models to get better results.
Wnuk et.al. [17] got more precision after combining CNN
with LSTM. Also, the use of new technologies like parallel
programming can be induced to achieve less computation
time and more accurate results.

D. Model training

Training of Deep Learning Algorithms is a challenging
task to train such massive data, ample time is needed.
Therefore, powerful computational resources like GPU and
the correct programming paradigm must be chosen. Also, the
training, validation and testing dataset must be chosen

properly.

An appropriate selection of hyperparameters can have a
great impact on deep architecture as they control the
behaviour of the training phase. In this view optimization
parameters or model, specific hyperparameters can be used
to adjust the performance of the model. Grid search and
random search approach can be used to evaluate the
algorithm for each combination of hyperparameter. While
training a model, we also need to set other parameters like
accurate learning rate, dropout rate, weight initialization,
batch size, number of epochs, hidden layers, hidden unit and
activation function, etc. The effect of the overfitting and
underfitting can be avoided if the model is well-tuned.

E. Performance evaluation

Generally k-fold cross- validation method is used to
examine the accuracy of the model. Some other parameters
like precision, accuracy, recall, f-measure, etc. are also used
to check the performance of the model.
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IV. USE OF DEEP LEARNING TECHNIQUES IN
CANCER PROGNOSIS

This section presents a systematic literature survey of the
work carried out by the researcher worldwide to diagnose
multiple types of cancers. We have used the publish and
perish tool[4] to fetch all the papers using the keywords
"Deep Learning Algorithms" + "Genomic profiles/gene
expressions" + "Cancer prediction/prognosis". Around 1000
papers were retrieved covering broad topics related to this
domain. Out of which 253 papers were identified reflecting
the use of only Deep Learning techniques in cancer
prognosis from the year 2016 to 2020. We have exclusively
considered those sub-domains where Deep Learning
Algorithms were used to predict clinical outcomes. We came
across research publications related to molecular analysis of
DNA(142  papers), introductory  papers exploring
applications of deep learning in cancer diagnosis(37 papers),
tumor image analysis to determine progression or
deterioration of cancer(11 papers), drug discovery, drug
response - patient survival prediction((25 papers) and in
many of the work an integrated system was developed to
predict multiple cancer types(38 papers) by analyzing gene

sequence. Then we sorted these papers based on citation
count to retrieve the most relevant papers. In figure 2, the
horizontal axis represents a spectrum of topics covered and
vertical axis represents the citation count of papers.
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Fig. 2. Different topics covered by researchers

The tablel, below shows the survey carried out to predict
different cancer types using genome sequencing. Here, we
have selected the top-30 papers based on their citation count.

TABLE 1. LITERATURE SURVEY
Sr.No | Ref. | Cancer types | Method No. of | Type of Accuracy | Validation | Important features Limitation
no | predicted samples | data Method
1 [5] BLCA, Genome Deep 6083 - TCGA - | Accuracy- 80% Identifies cancer risk | Non-Omics data can be
RCA,COAD, | Learning - DNN | WES' Tumor | 94.70%, training | using gene expression | integrated & need to
GBM, KIRC, | - Decay method | tumor samples, | Sensitivity & 20% | before it is diagnosed have generalized model
LGG, LUSC, -L2 samples | IGSR- |-97.30%, testing to predict more cancer
OV, PRAD, regularization & 1991 Healthy | Specificity types.
SKCM, method - samples | - 85.54%
THCA, UCEC | - Sliding average | healthy
model samples
2 [6] | BRCA, OV, Bayesian Transcri | TCGA | Median c- 60% It works on small | Larger dataset is needed
UCEC optimization ptional | Integrator |index training | datasets & uses transfer | to avoid overfitting and
method, Deep feature ranging 20% learning for non-linear models
Neural set(RN from 0.664 | validation | Approach to improve |risk back propagation
Networks, Risk A) - t0 0.599 & 20% | prognostic accuracy. analysis should be done
back 17,000 testing to improve for non-
propagation Integrat linear models
ed - 300
to 400
features
3 [7] | ACC,BLCA, | Deep-Gene,an | 22,834 | TCGA Optimal 10-fold | This model generated | This model can be
BRCA, advanced deep genes accuracy of Ccross more accurate cancer | extended for complex
CESC,HNSC | neural network | from the 60.1% validation | classification based on | genotype- phenotype,
, KIRP, LGG, (DNN) based 3122 method | somatic point mutation. | for large scale data
LUAD, classifier samples
PRAD,
PAAD, STAD
& UCS
4 [8] | BRCA,GBM, Boosting 3594 | TCGA Accuracy- 5-fold It  disseminates the | System lacks to handle
COAD, LHSC | Cascade Deep | Samples | Pan 80.6% cross benefits of selective | imbalanced and high-
& LUNG Forest cancer validation | features to dimensional small-
method | remaining layers to | scale data and improve
improve the | stability of algorithm.
classification
performance.
5 [9] | LUAD, STAD | Stacked sparse | 21,000 | TCGA Accuracy- 5-fold This model processes | Algorithm suffers from
& BRCA auto-encoder genes 97.03% Ccross high- dimensional data | imbalanced calculation
(SSAE) based validation | with good accuracy. accuracy, stability and
classification method computational cost is
using RNA- seq more.
data
3
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6 [10] | Detection of Stacked 1144 | KEGG Average 10-fold | Algorithm discussed | Annotation
new gene Denoising genes | Pathway | Precision is Cross here provides | performance can be
function Autoencoder & 0.577 validation | dimension reduction | improved by
Multi-Label PubMed method | and multi-label | integrating more
Learning Central classification pathway information.

7 [11] | ACC,BRCA, | Dedicated CNN | 60383 | TCGA C-index of | 80 Epochs | Model induced here | There is a need to use
CESC,DLBC with fully genes | Pan 0.78 trains feature encodings | deeper architecture and
,KICH,KIRC | connected layers cancer and  Predict single | advanced data
LKIRP,OV,P cancer, overall survival | expansion is needed to
CPG,PRAD, and capable of handling | improvise accuracy.
SARC,SKC multimodal data.

M,TGCT,TH
CA,THYM,
UCEC
8 [12] BRCA, deepDriver - 2082 | NCI AUC = 10-fold | Algorithm learns | Accuracy  can  be
COAD & CNN genes | Genomic |0.984 for Cross information hidden | improved by extracting
LUAD Data BRCA and | validation |within mutation data | predictive feature
Commons | AUC= method | and similarity networks
(GDC) 0.976  for concurrently.
colorectal
cancer
9 [13] GBM Pathway- 522 TCGA AUC-0.66, 5-fold This network prepares | Future scope is there to
Associated samples Fl-score - cross predicts patient’s | reduce overfitting &
Sparse Deep & 0.39 validation | prognosis & describe | dimensionality
Neural Network | 12,044 complex biological
(PASNet) genes process regarding
biological pathways for
prognosis.
10 [14] Acute Deep profile - 13,237 | NCBI & Classificati 5-fold This model extracts a | There is a need to
Myeloid Autoencoder genes | GEO on  error cross feature  representation | handle multiple cancer
Leukemia rate is 0.24 | validation | from a vast expression | types by using
(AML) for Deep- data to predict complex | DeepProfile - using
profile disease phenotype multi- omics data
11 | [15] Thyroid Denoising 510 TCGA Feature S-fold Algorithm used here | More biologically
cancer Autoencoders cancer extraction Cross- selects highly predictive | meaningful information
and samples accuracy - | validation | features from this high | needed to be extracted
Stacked with 97.36 dimensional data
Denoising 60,483
Autoencoders genes
12 | [16] Find outs CNN 18330 |c- Accuracy- 3-fold Performs robust | Need to do testing on
oncogenic genes | Bioportal | 86.68% Cross- classification with | larger
mutations in database validation | limited features architecture
gene sequence

13 [17] LUAD, CNN & LSTM 3172 | TCGA Precision= 80% It can handle new |Need to consider other
LUSC, KICH, genes 93.40 training | sample types without | clinical parameters with
KIRC, KIRP & 20% | re-training. DNA sequence.

& BRCA Recall= testing
63.6
14 | [18] BRCA, Network-based 2500 | GDAC AUC-ROC 10-fold | This system find out | To  apply  G2Vec
BLCA, CESC, | deep learning genes | Firchose | value = cross prognostic framework to
LAML & method, called 0.009— validation | gene signatures using | multiple omics datasets
LIHC G2Vec 0.049 distributed gene | and to have integrative
representations analysis is a challenge
generated by G2Vec
15 | [19] 24 cancer Fully connected, 2436 | TCGA Accuracy= 4- fold somatic mutation based | To improve the
types feed-forward genes 91% Cross cancer prediction classifier performance
neural network validation by training with larger
numbers of samples.

16 | [20] COAD, CNN 6045 | TCGA Accuracy= 5-fold |Finds out the most|Need to provide more
READ, KICH, genes 77.5% Ccross relevant gene strong classification
KIRC, KIRP, validation | contributing in performance to predict

LUAD & development of specific | multiple cancer
LUSC type of cancer. subtypes.
17 | [21] | Tested on 24 DNN 9883 | TCGA Accuracy= 90% This is trained DNN | To develop a common
different genes 99.70% training | model used to classify | classifier to predict
tissues & 10% | most oncogenic genes. | multiple cancer types.
testing
4
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18 | [22] 33 cancer CNN 10267 |ICGC/TC | Accuracy= 10- fold | This model is able to | There is a need to
types samples | GA 95.65% Cross accurately  distinguish | improve the
validation |among 23 major cancer | interpretation &
types using information | understanding of deep
derived  from somatic | learning algorithm
mutations alone. works.
19 | [23] BRCA, CNN 4174 | TCGA Accuracy= 70% DeepCues  algorithm | It is  capable of
COAD, samples 77.65% training | discussed here | handling expression
LUAD, & 30% | integrates germline | level, copy number
KIRC, Brain testing variants and somatic | variation, methylation
& Uterus mutations interactively
20 | [24] 33 cancer CNN 10,340 | TCGA Accuracy= 5-fold This is a new CNN Model makes few
types samples 95.7% Cross —based model for cancer | mistakes while
validation | prognosis based on gene | identifying cancer
expression profiles. subtypes with the same
tissue origin.
21 [25] | Blood, brain, Multi-class 23,450 | Tomlins- | Accuracy= 80% Achieves multi- class | Transcriptomic and
prostate, classification samples | 2006-v1, |[85.5% training | classification of gene | proteomic
endometriu m, using DNN Khan- & 20% | expression data with the | data could improve
multi- tissues 2001, testing aim to predict the type | upon the classification
Lapoint- of cancer. model
2004-v2
and
Tomlin-
2006-v2
22 | [26] 12 cancer Autoencoder 59,774 | TCGA Max- C 10-fold | Algorithm selects most | Model performance can
types samples index Cross informative features to | be improved by
=0.87 validation | construct the prediction | combining multi- omics
model by Xgboost data with multimodal
data.
23 | [27] | Lung cancer Feed forward 72 BioLab Accuracy= 10-fold | Algorithm provides | Model should be scaled
neural networks | samples | portal 0.83 cross optimized  framework | further to deal with
with Sensitivity | validation | for cancer classification | large size of
12,600 =0.86 using hybrid | oncological data
genes combination  of deep
learning and genetic
algorithm
24 | [28] | Lung cancer CNN 10535 | TCGA AUC=0.73 5-fold This algorithm selects | Same transfer learning
sample Sensitivity cross only high level featured | approach can be used
with =0.67 validation |using CNN by for pan cancer dataset.
7509 transforming RNA- seq
genes Specificity samples into  gene-
=0.68 expression images.
25 | [29] 18 cancer Deep sequencing 344 Addenbro | AUC=0.98 4-fold This method To improve sensitivity
types using whole plasma | oke’s 9 for high cross provides earlier | by combining fragment
genome samples | Hospital, | ctDNA validation | diagnosis & study of | segment analysis with
sequencing from | Cambridg | cancers, tumor biology other entities in blood
200 e, UK and such as microvesicles
patients AUC=0.89 and tumor-educated
1 for low platelets
ctDNA
cancers
26 | [30] | Lungcancer | Deep sequencing 42 Private Sensitivity | Leave-one- | Robust algorithm to | To  develop  CLiP
patients | hospital =98% cut-out | differentiate early- stage | methods for a diverse
dataset Ccross lung cancer patients | range of malignancies.
validation |from matched control
group.
27 | [31] 19 tumor CNN 20 TCGA AUC=96.5 N=427 | Classifies glial tumors | Requires more
types patients 2% & can be integrated | computational power to
with somatic variation | train CNN network.
detection.
28 | [32] | Breast cancer Stacked 33564 | Integrated | Accuracy= 4-fold Reduces high Handling high volume
Autoencoder features | dataset 93.48% cross dimensions of multi- | data with  multiple
of 305 validation | omics data. dimension is difficult.
patients
29 | [33] | Hepatocellul Ultra deep 11079 | TCGA Accuracy= 4-fold Typical alterations in | Small genetic
ar sequencing samples 92.27% Ccross genome sequence | variations  in tumor
carcinoma validation | causing malignant | may not be addressed.
tumor are captured
precisely.
30 | [34] Multiple CNN 2318 | Cosmic Accuracy 4-fold Predicts the oncogenic | Reduction of false
cancer type samples =86% Cross potential of a protein | positive rate by training
validation | sequence resulting from | large samples
a gene fusion.
5
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From the above survey, it is clear that a lot of research is
on- going in this area. The last column highlights the gaps
identified in the development of a predictive modelling
system using genome sequencing. The following figure-5
shows a variety of cancer types addressed by different
researchers.
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Fig. 3. Cancer types covered in various research studies

We also tried to figure out the most popular algorithms
used by researchers in literature. Table 2 enlists different
types of Deep Learning Algorithms used by researchers
along with serial numbers referred in table 1.

TABLEII. DEEP LEARNING ALGORITHMS USED BY RESEARCHERS
Sr. Name of algorithm Reference no w.r.t
No. table 1

1. Deep Neural Networks [1,2,3,9,14,17,21]
(DNN)
2. Convolutional Neural [7,8,12,13,16,18,19,
Network (CNN) 20,24,27,30]
3. Backpropagation algorithm 2]
4. Deep forest algorithm [4]
5. Autoencoder (AE) [10,22]
6. Stacked Sparse Auto [5]
Encoder(SSAE)
7. Stacked Denoising Auto [6,11,28]
Encoder(SDAE)
8. Long Short Term Memory [13]
(LSTM)
9. Feedforward Neural [15,23]
Network
10. Deep sequencing [25,26,29]

This section also covers types of Deep Learning
architectures used in handling genomic profiles. :

A. Deep Neural Network

The term “deep” in name refers to use of multiple hidden
layers making a network to learn more complex patterns
from the input data with multiple levels of abstraction. In
DNN, the input is fed to neurons of the first layer and an
activation function is calculated for each neuron. This output
is forwarded to the next layer’s neurons. If the output of
neurons is larger, obviously the significance of the input
dimension is also larger. Further, these dimensions are
combined in the next layer to form updated dimensions and
hence system learns intuitively. The performance of DNN

highly depends on parameters selected during the training
phase. It is observed that the semi- supervised approach like
combining fine-tuning of parameters using backpropagation
and use of gradient descent technique to minimize prediction
error rate can significantly improve the performance of an
algorithm[35]

B. Convolutional Neural Network

It is one of the effective deep learning models because it
can automatically perform adaptive feature extraction during
the training phase. In the case of genomic profiles, CNN can
be applied to discover meaningful recurring patterns. It
simplifies the network model by assigning weights on a
singular mapping of features so that overall weights can be
reduced. CNN has been widely used to model sequence
specificity of protein binding[36], to learn the effect of non-
coding variants, and to study the functional activities of
DNA sequence. One needs to optimize the ability of CNN
and choose appropriate CNN architecture as per the need of
an application. Specifically, when handling genomic data,
deep learning models are always over-parameterized.[37]
Thus, only varying network depth may not result in
performance improvement. Many other parameters like
kernel size, the number of feature maps, the design of
convolutional kernel and choice of window size of input
sequences must be taken into consideration.[38]

C. Backpropagation algorithm

When input data is fed to the neurons of a first input layer
then the end output will be a prediction (sometimes it may be
correct or incorrect). If we provide output again as feedback
to the neural network to improve using some means to
predict better, the system learns by updating the weight for
the connections. To complete the process of providing
feedback and defining the next step to make changes
accurately, we use a backpropagation.[39] Reiterating the
process multiple times step-by-step, with more and more
data assists the network to update the weights appropriately
and leads to a system where it can decide for predicting
output based on the rules it has formed for itself through the
weights and connections.

D. Deep forest algorithm

In gene expression analysis, the sparsity of effective
features is unknown. Therefore to learn from sparse features
and feed representation to a neural network, random forest
algorithms can be integrated with it and named as Deep-
forest algorithms[40]. This algorithm consists of two parts:
the forest part which is used to extract features from raw
sparsed input with the supervision of training outcomes and
the second part is DNN which predicts learning outcomes
with the help of new feature representation.

E. Auto-encoders

Auto-encoder is a type of neural network that finds a new
representation of input nodes by using unsupervised learning
techniques. It captures the significant features of the input
data and restores the original data. They are widely used to
extract meaningful features from data because they are
capable to learn new presentation of data through encode-
decode procedure.

F. Stacked Sparse Auto Encoder(SSAE)

If the number of free nodes are more then using the
backpropagation and gradient descent approach would not be
efficient.[41]
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Therefore, the number of hidden units to be activated by
introducing sparsity-constraints at each hidden layer is
restricted by using stacked sparse auto-encoders. Meaningful
features are efficiently extracted from high dimensional data
using SSAE.

G. Stacked Denoising Auto Encoder(SDAE)

A simple auto-encoder can successfully remember
information from the inputs in new features within the
hidden layer. But simply recalling information from the
inputs does not assure that the extracted features are good.
Denoising auto-encoder generates noisy representation
depending on the input values e.g. setting values to 0 for a
few input nodes or add a noise term with a Gaussian
distribution and then feed that noisy term to the auto-
encoder. More robust features can be constructed using noisy
terms and thus unseen data samples can be handled
effectively. An SDAE is a multi-layer auto- encoder. Each
hidden layer is a representation of the previous layer
obtained by a denoising auto-encoder with one hidden
layer[41].

H. Long Short Term Memory (LSTM)

It is similar to Recurrent Neural Network (RNN). In
RNN output from the last step is fed as input in the current
step. RNN suffers from the problem of long — term
dependencies i.e. it makes predictions based on only recent
information and it cannot predict words stored in long-term
memory. LSTM is used to predict genotype, grading,
treatment plan (based on the risk score).

I Feedforward neural network

This is a basic and simple type of artificial neural
network in which information flows only in the forward
direction from the input layer’s nodes to output nodes
through the hidden nodes. No cycles are formed during
designing of the network.

J.  Deep sequencing

These methods allow sequencing of billions of nucleotide
in a single run. Whole-genome sequencers generate and
analyze reads using massively parallel processing reactions
that generate multiple reads covering each position in the
genome. From the above survey, it is clear that a lot of
research is on-going in this area. The last column highlights
the gaps. It can be also observed that few researchers have
integrated multiple algorithms to enhance the accuracy of the
model.

Research gaps identified from the literature survey are
mentioned below:

a) Due to the heterogeneity of tumors, constructing a
reliable background mutation model is difficult.

b) Need to integrate omics and non-omics data to get
better accuracy.

c) Identification of candidate genes that might explain
significant response variations. To have a timely
diagnosis of critical diseases, including cancers, with
the least possible error, is the foremost expectation
of patients.

d) The genomic profiles contain a massive set of
multidimensional data, which should be analyzed
with an appropriate statistical method to extract
meaningful information.

e) There is a need to build a strong pre-processing
model and appropriate feature selection to reduce the
dimensionality and complexity of the dataset.

f) Need to achieve high efficiency in identifying
matched target therapies for individuals. Patient
response prediction, sensitivity, of a clinical drug
toward the multiple diseases is a significant issue.

g) The scope is there to handle algorithmic unfairness
model bias, model variance and outcome noise

h) Prediction of generic cancer driver genes using the
pancancer dataset.

i) Identification of new pathways and networks needed
to discover malignant transformation.

j)  There is a need for deeper architecture to handle
enormous genome data.

k) The system lacks to handle imbalanced and high-
dimensional small-scale data.

I) A larger dataset is needed to avoid overfitting
problem and risk backpropagation analysis should be
performed for non-linear models.

V. CHALLENGES IN USING DEEP LEARNING
ALGORITHMS

From the above literature survey, it is clear that though a
lot of research is going on in the area of cancer prognosis
using genome sequencing, there is a need of promising
research in this study focusing on the following challenges :

1 The genomics profile contains a massive set of
multidimensional data which should be analyzed
with an appropriate  statistical method to extract
meaningful information. There is a need to have
strong dimensionality- reduction techniques to
remove unwanted data and to save computational
power by processing appropriate data in subsequent
phases. On the contrary side, deep-learning
algorithms are capable of automatic feature
extraction and encapsulate non-linear relations
through convolutions or recurrences. If important
features are selected in the initial stage, the accuracy
of a model will enhance automatically.

2 There is a necessity to have more patient data for all
tumor types. As the performance of Deep Learning
Algorithms highly depends on the size of the input,
an amount of input data should be more to avoid
overfitting  problems. Researchers are using
techniques like transfer learning to deal with a small
dataset.

3  The unbalanced nature of patient data adversely
impacts the performance of model. E.g. If we
consider clinical records of a patient, there must be
an even number of survived and death cases to get
better accuracy in the model. Also other performance
measures like precision, recall, F- measures can be
used additionally to test the results of a model. Guo
et al.[8] & Xio et. al.[9] also discussed that a
balanced dataset is needed to improve the stability
and accuracy of the model.

Handling of missing values in the dataset poses
another challenge that too when the size of a dataset
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is small. Many missing value imputation techniques
like mean-mode- median based imputation,
imputation using  k-NN, imputation using
Multivariate Imputation by Chained Equation
(MICE), etc. can be used.

4  The availability of a dataset that integrates omics and
non-omics data is crucial because when gene
expression data is combined with additional health
determinants, better accuracy in results is obtained.
For this freely and publicly available datasets are in
demand. Authors [5, 18, 22] have already taken this
as a challenge as a part of their further expansion.

5 Building a single predictive model to handle
multiple cancer types is a big challenge. The
accuracy of a model differs from one cancer type to
another. Therefore it is very difficult to comment on
which model is best. A generalized deep learning
model applicable across all types of cancer with a
standardized validation method is crucial. Studies
taken [5, 7, 8, 11 31, 34] have also highlighted that
to deal with multiple cancer using one model is
difficult.

6  There is a need to improve annotation performance
by integrating more pathway information. For this,
we urgently need more medical experts and
researchers from the bio- medical field to label the
data.

VI. FUTURE DIRECTIONS FOR RESEARCHERS

This section highlights some future directions for
researchers in the field of cancer genomics. [42]

A. Advances in NGS:

Massively parallel and High Throughput machines are
used for sequencing DNA data, which has raised many
opportunities for the researchers. Open research issues are:

e To do DNA sequencing with speed and scalability

e To discover novel pathogens for the identification of
diseases.

e To analyze epigenetic factors like DNA methylation
and protein-protein interaction.

e To do the sequencing of somatic variations integrated
with other types to detect rare diseases.

Development in NGS and in bioinformatics algorithms
can be also used to predict drug response resulting in
effective personalized cancer therapy.

B. Biomarker-based clinical treatments:

Cancer is a silent killer that propagates in the body
without acute symptoms. Cancerous cells grow in an
uncontrolled manner causing the healthy cells get converted
into infected ones. The Next-generation of clinical treatment
should precisely learn tumor heterogeneity using genomic
profiles and offer suitable treatment.

C. Combinational immunotherapy

Immunotherapy can be combined with other types of
treatment such as chemotherapy, targeted therapy and
radiation therapy to acquire expected results.

VII. CONCLUSION

Analysis of genomic profiles using High Throughput
sequencing techniques has just changed the way of how we
should look at biomedicine. To mine meaningful insights
from data are vital for noticing genes disorders which is
useful in getting a prior warning to critical diseases like
cancer and offer personalized treatment to a patient. Many
deep learning algorithms have been proposed to predict
harmful gene mutations in cancer. Though no single method
is universal, the choice of whether and how to use Deep
Learning Algorithms remains problem-specific. This paper
has reviewed various research work done in the literature and
discussed the motivation behind using Deep Learning
Algorithms in cancer prediction using a genomic profile.
From the analysis of the existing work, it is concluded that
effectively extracting the insights from complex genome data
is still a challenging task for time-sensitive decision making
in healthcare services.

ACKNOWLEDGEMENT

The quote “Give me the wisdom to know what must be
done & the courage to do it” mirrors my gratitude
towards Dr. Jayashree R. Prasad under whom I worked as a
research scholar. She has not only shaped my views on how
the research process should go but also inspired me to know
the importance of quality research with a promising impact.
Also, I extend my heartfelt thanks to Dr. Rajesh S. Prasad
whose kind advice and invaluable encouragement
enlightened me to work with even more zeal and enthusiasm.
Last but not least, thanks to my family members and friends
for trusting and elevating me whenever it was in need.

REFERENCES

[17 Saproo V, Upadhyay R and Valera M 2019 Survey of Feature
Selection and Text Classification Methods for Genetic Mutation
Classification Int. J. Comput. Sci. Eng. 7 933—7

[2] Kourou K, Exarchos T P, Exarchos K P, Karamouzis M V. and
Fotiadis D I 2015 Machine learning applications in cancer prognosis
and prediction Comput. Struct. Biotechnol. J. 13 8-17

[3] Bhonde S B and Prasad J R 2020 Machine learning approach to
revolutionize use of holistic health records for personalized healthcare
Int. J. Adv. Sci. Technol. 29 313-21

[4] Anon Publish & Perish Sun Y, Zhu S, Ma K, Liu W, Yue Y, Hu G,
Lu H and Chen W 2019 Identification of 12 cancer types through
genome deep learning Sci. Rep. 9 1-9

[51 Yousefi S, Amrollahi F, Amgad M, Dong C, Lewis J E, Song C,
Gutman D A, Halani S H, Vega J E V, Brat D J and Cooper L A D
2017 Predicting clinical outcomes from large scale cancer genomic
profiles with deep survival models Sci. Rep. 7 1-11

[6] Yuan Y, Shi Y, Li C, Kim J, Cai W, Han Z and Feng D D 2016
Deepgene: An advanced cancer type classifier based on deep learning
and somatic point mutations BMC Bioinformatics 17

[77 Guo Y, Liu S, Li Z and Shang X 2018 BCDForest: A boosting
cascade deep forest model towards the classification of cancer
subtypes based on gene expression data BMC Bioinformatics 19 1-13

[8] Xiao Y, Wu J, Lin Z and Zhao X 2018 A semi-supervised deep
learning method based on stacked sparse auto-encoder for cancer
prediction using RNA-seq data Comput. Methods Programs Biomed.
166 99-105

[91 Guan R, Wang X, Yang M Q, Zhang Y, Zhou F, Yang C and Liang Y
2018 Multi-label Deep Learning for Gene Function Annotation in
Cancer Pathways Sci. Rep. 8 1-9

[10] Cheerla A and Gevaert O 2019 Deep learning with multimodal
representation for pancancer prognosis prediction Bioinformatics 35
1446-54

[11] Luo P, Ding Y, Lei X and Wu F X 2019 DeepDriver: Predicting
cancer driver genes based on somatic mutations using deep
convolutional neural networks Front. Genet. 10 1-12

Authorized licensed use limited to: University of Prince Edward Island. Downloaded on June 03,2021 at 05:39:01 UTC from IEEE Xplore. Restrictions apply.



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

(22]

(23]

[24]

Hao J, Kim Y, Kim T K and Kang M 2018 PASNet: Pathway-
associated sparse deep neural network for prognosis prediction from
high-throughput data BMC Bioinformatics 19 1-13

Dincer A B, Celik S, Hiranuma N and Lee S-I 2018 DeepProfile:
Deep learning of cancer molecular profiles for precision medicine
bioRxiv 278739

Teixeira V, Camacho R and Ferreira P G 2017 Learning influential
genes on cancer gene expression data with stacked denoising
autoencoders Proc. - 2017 IEEE Int. Conf. Bioinforma. Biomed.
BIBM 2017 2017-Janua 1201-5

Agajanian S, Oluyemi O and Verkhivker G M 2019 Integration of
random forest classifiers and deep convolutional neural networks for
classification and biomolecular modeling of cancer driver mutations
Front. Mol. Biosci. 6

Choi J, Oh I, Seo S and Ahn J 2018 G2Vec: Distributed gene
representations for identification of cancer prognostic genes Sci. Rep.
8 1-10

Jiao W, Atwal G, Polak , 2020 A deep learning system accurately
classifies primary and metastatic cancers using passenger mutation
patterns Nat. Commun. 11 1-12

Lin C Y, Ruan P, Li R, Yang J M, See S, Song J and Akutsu T 2019
Deep learning with evolutionary and genomic profiles for identifying
cancer subtypes J. Bioinform. Comput. Biol. 17 1-15

Ahn T, Goo T, Lee C H, Kim S, Han K, Park S and Park T 2019
Deep Learning-based Identification of Cancer or Normal Tissue using
Gene Expression Data Proc. - 2018 IEEE Int. Conf. Bioinforma.
Biomed. BIBM 2018 1748-52

De Guia J M, Devaraj M and Leung C K 2019 DeepGX: Deep
learning using gene expression for cancer classification Proc. 2019
IEEE/ACM Int. Conf. Adv. Soc. Networks Anal. Mining, ASONAM
2019 913-20

Zeng Z, Mao C, Vo A, Nugent J O, Khan S A, Clare S E and Luo Y
2019 Deep learning for cancer type classification bioRxiv 612762
Mostavi M, Chiu Y C, Huang Y and Chen Y 2020 Convolutional
neural network models for cancer type prediction based on gene
expression BMC Med. Genomics 13 1-13

Bigueras R T, Torio J O and Palacag T D 2018 A data-driven
architectural framework for LGUs in disaster preparedness and
management system Int. J. Mach. Learn. Comput. 8 454-9

Chai H, Zhou X, Cui Z, Rao J, Hu Z, Lu Y, Zhao H and Yang Y 2019
Integrating multi-omics data with deep learning for predicting cancer
prognosis bioRxiv 807214

(23]

[26]

(27]

(28]

[29

[}

[30

[

(31]

(32]

[33]

[34]

[33]

[36]

[37]

[38]

Sharma A and Rani R 2017 An optimized framework for cancer
classification using deep learning and genetic algorithm J. Med.
Imaging Heal. Informatics 7 1851-6

Lopez-Garcia G, Jerez J M, Franco L and Veredas F J 2020 Transfer
learning with convolutional neural networks for cancer survival
prediction using gene-expression data PLoS One 15 1-24

Mouliere F, Chandrananda D, Piskorz A M, 2018 Enhanced detection
of circulating tumor DNA by fragment size analysis (Europe PMC
Funders Group) Sci. Transl. Med. 10 1-28

Chabon J J, Hamilton E G, Kurtz D M, Esfahani, 2020 Integrating
genomic features for non-invasive early lung cancer detection Nature
580 245-51

Park H, Chun S M, Shim J, Oh J H, Cho E J, Hwang H S, Lee J Y,
Kim D, Jang S J, Nam S J, Hwang C, Sohn I and Sung C O 2019
Detection of chromosome structural variation by targeted next-
generation sequencing and a deep learning application Sci. Rep. 9 1-9

Rakshit S 2018 Deep Learning for Integrated Analysis of Breast
Cancer Subtype Specific Multi-omics Data TENCON 2018 - 2018
IEEE Reg. 10 Conf. 1917-22

Campo D S, Nayak V, Srinivasamoorthy G and Khudyakov Y 2019
Entropy of mitochondrial DNA circulating in blood is associated with
hepatocellular carcinoma BMC Med. Genomics 12 1-11

Lovino M, Urgese G, Macii E, Di Cataldo S and Ficarra E 2019 A
deep learning approach to the screening of oncogenic gene fusions in
humans Int. J. Mol. Sci. 20 1-13

Zeebaree D Q, Haron H and Abdulazeez A M 2018 Gene Selection
and Classification of Microarray Data Using Convolutional Neural
Network ICOASE 2018 - Int. Conf. Adv. Sci. Eng. 145-50

Zeng H, Edwards M D, Liu G and Gifford D K 2016 Convolutional
neural network architectures for predicting DNA- protein binding
Bioinformatics 32 1121-7

JZ and OG T 2015 Predicting effects of noncoding variants with deep
learning—based sequence model Nat. Methods Kelley D R, Snoek J
and Rinn J L 2016 Basset: Learning the regulatory code of the
accessible genome with deep convolutional neural networks Genome
Res. 26 990-9

Koumakis L 2020 Deep learning models in genomics; are we there
yet? Comput. Struct. Biotechnol. J. 18 1466—73 Anon Layman

Kong Y and Yu T 2018 A Deep Neural Network Model using
Random Forest to Extract Feature Representation for Gene
Expression Data Classification Sci. Rep. 8 1-9 et al. C 2016
FLEVLLFEEL HHS Public Access Physiol. Behav. 176 139-48
Zhang H and Chen J 2018 Journalo fCan c e r Current status
and future directions of cancer immunotherapy

Authorized licensed use limited to: University of Prince Edward Island. Downloaded on June 03,2021 at 05:39:01 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


