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Classification generally assigns objects to enormous predefined categories and it is pervasive crisis
that covers various application. Preparing the data for Classification and Prediction is the major
problem in classification. In order to rectify this issue, an approximate function is proposed using
IC-FNN. For acquiring correlated fuzzy rules and non-separable rules that comes under proper
optimization problem. The extracted fuzzy rule’s parameter was fine-tuned sourced on hierarchi-
cal Levenberg Marquardt (LM) learning method for enhancing performance. But here parameters
of fuzzy rules aren’t tuned perfectly. Hybridization of Ant Colony Optimization Genetic Algorithm
(HACOGA) is proposed here to rectify these issues. It tunes the parameters of the extracted fuzzy
rules. Hybridization is enforced to certain factors and ACO and GA variables that share same
characteristics in the computation. Experimental results shows that proposed HACOGA assist in
enhancing the performance of FNN with recall, precision, accuracy and F-measure for the Abalone
age prediction dataset.
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1. INTRODUCTION

To spotlight on classes or categories, classification gener-
ally assigns items in a collection and targets at precisely
identifying every case target values in data. Fuzzy infer-
ence systems (FIS) is one amongst popular applications of
fuzzy-logic and fuzzy-set-theory, which acquires the diag-
nosis and off line method simulation, classification tasks,
various online decision making modern tools and con-
trol methods. FIS specifically based on two fold identities.
Else, it possesses an ability to manage the linguistic ideas.
It is universal approximates, because it performs the non-
linear mappings among outputs and inputs [1].

These two features assist in modelling two types of FIS
design. 1st FIS targets on competency of fuzzy concept
to design language processing [2]. FIS comprises of fuzzy
concepts which are constructed from gaining expertise
and we name it as fuzzy controllers or fuzzy expert sys-
tems, based on its last utilization. Expert knowledge was
cast off to design knowledge engineering for simulation.
Knowledge engineering works according to the classical
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Boolean logic and it doesn’t suit to control the progres-
siveness in the primary process phenomena [3, 4]. Here,
gradual rules were brought-in in expert knowledge based
simulators and it points human knowledge restriction,
predominantly complexity in modelling complex process
interactions.

Appropriate generalization capability and high semantic
level were offered by FIS. Unfortunately, the tediousness
of huge systems tends to inadequate accuracy in simula-
tion outcomes. Expert knowledge works according to FIS,
which gives poor performances. Parameter evaluation and
structure identification were considered as two significant
problems in building an FIS. The former one works on
describing numerous fuzzy rules and it works on estimat-
ing deriving appropriate parameter values to build effectual
system [5].

For acquiring correlated fuzzy and non-separable rules
we bring-in proper optimization problem. But here param-
eters of fuzzy rules aren’t adjusted correctly. Hybridiza-
tion of Ant Colony Optimization Genetic Algorithm
(HACOGA) is proposed here to rectify these issues.
It tunes extracted fuzzy rules parameters. Hybridization
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enforces certain factors and GA and ACO variables,
which in turn, share similar computation characteristics.
The anticipated hybridization process is predominantly
enhances FNN performance.

2. LITERATURE REVIEW

A FNN having novelty model with parallel fuzzy concepts
(CFNN) which works on Levenberg—Marquardt (LM) opti-
mization approach was anticipated by Ebadzadeh and
Salimi-Badr [7]. This method gives an approximate non
linear function, particularly the functions with greater cor-
relation among the input variables with least amount of
fuzzy rules. Multivariable Gaussian fuzzy membership
function were established, which assumes the correlation
among the input variables and it will design non-separable
relations variables interaction. LM optimization approach
helps to get the knowledge factors of both premise
and fuzzy rule set. This algorithm helps us to enforce
the seven tested samples along with time-series pre-
diction, static function approximation, real-world com-
plex regression problem and non-linear dynamic system
identification.

A fresh fuzzy rule transfer approach for self-
construction fuzzy neural inference networks was
anticipated by Prasad et al. [8]. A novel FNN framework
is basically merging an Auto Regressive with exogenous
input (ARX) with nonlinear Tanh function in Takagi-
Sugeno (T-S) kind fuzzy part was proposed by Zhang
and Tao [9]. For optimizing parameters and structure
of FNN under unknown plant dynamics simultaneously,
an improved genetic algorithm is designed. ARX plus
input structure the nonlinear function sub-model, num-
ber of fuzzy rules, and membership function parame-
ters was enhanced by neighbourhood search operator,
hybrid encoding/decoding and preserve operator. Accord-
ing to experimental output it is concluded that anticipated
approach is better in structure simplification, generaliza-
tion capability and modelling precision. Various types of
classification on machine methods are defined with chal-
lenges,drawbacks with advantages are defined [26].

An efficient optimization technique was brought-in by
Han et al. [10]. In learning process, this SASOA-FNN
helps to systematize structure and manage parameters con-
currently. Third, SASOA-FNN convergence is confirmed
with updated and fixed structure and guidelines for param-
eters choosing. At last, experiments were executed on var-
ious nonlinear systems for checking the effectiveness. The
comparison result states that proposed SASOA-FNN gives
better performance.

An enhanced self-construction fuzzy neural infer-
ence network version, termed as soft-boosted SONFIN
(SB-SONFIN) was proposed by Prasad et al. [11]. For
minimizing the rate of error and for improving quick
learning, design softly boosts learning process of SON-
FIN. By considering fuzzy rules and primary weights
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SB-SONFIN improves SONFIN learning process, which
has two significant SONFIN parameters, SB-SONFIN pro-
gresses learning procedure using: 1) weights initializing
with fuzzy sets width indeed of random digits and 2) to
enhance the rate of parameter with amount of fuzzy rules.
On numerous real world and benchmark datasets, rec-
ommended soft boosting strategy is validated. According
to experimental output it is concluded that SB-SONFIN
possesses ability to surpass other known approaches on
diverse datasets. In image processing to balance the energy
accuracy for the quality improvement of images are
defined [25].

An proficient learning method for constructing self-
organizing FNNs was established by Han et al. [12], where
we adapt algorithm having second order with malleable
learning rate, parameters and it can be determined the net-
work size with equal time in learning procedure. Initially,
entire SOFNN parameters were adapted with help of SOA
strategy for accomplishing the fast convergence through
influential search scheme. Next, SOFNN structure may be
self regulated with help of relative importance index of
every rules. Later, a new layer is introduced to find the
edge detection of the image processing [24].

Self-regulating FNN with adaptive gradient algorithm
for nonlinear systems modelling was suggested by Han
et al. [13]. Initially, fuzzy rules (PFR) potentially help to
get normalized layer output and to reduce error ratio in
the process of training. Structure learning concept is estab-
lished to define the size of network sourced on PFR. Next,
an adaptive gradient having malleable nature with flexible
learning rate is created to correct SOFNN-AGA parameter.
Furthermore, in self-organizing structure and fixed struc-
ture cases, theoretical analysis on SOFNN-AGA conver-
gence is provided to demonstrate efficiency. Fuzzy method
with HASO used to minimize the space and complexity of
the FNN [27].

3. PROPOSED METHODOLOGY

Fuzzy Neural Network (FNN) was explained in this
section for function approximation using 3 processes: ini-
tially, interpretable and intuitive fuzzy rules. Subsequently,
according to fuzzy rules extraction, an appropriate frame-
work is built. At last, initial values are fine-tuned accord-
ing to Hybridization of Ant Colony Optimization Genetic
Algorithm [HACOGA].

3.1. Extracting Intuitive Fuzzy Rules and

Initial Interpretable
If the destination function surface (landscape in nature) is
considered as landscape of the mountain, then every hill
in landscape will be appropriate interpretable and intuitive
fuzzy rule for approximate the function. So, the demanded
model rules these should be non-separable and correlated.
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These inseparably and correlated fuzzy concepts will be
determined is as below

p(y)=e T (M

where the M specifies hill centre and © specifies weight
matrix to generate inseparably fuzzy rule correlated con-
tours. Certainly, 0 defines outline and control of fuzzy
rule contours. Usually, hills centres in function landscape
points superior output values in neighbourhoods. Hence,
local maximums were chosen from training samples, is
appropriate candidates for rule centres. Accordingly, rules
centre, (M; for jth rule), gets training samples [14]. Sub-
sequently, matrix o; for jth fuzzy rule (j =1,2,3,...,r),
defines fuzzy rule contour to contours which is of covered
hill in the landscape function. For haul out fuzzy concepts
with contours same as closed region of destination func-
tion, matrix ©; for jth fuzzy concept is determined on
rectifying subsequent optimization crisis:

r N
) Max {:ZZ/‘Lj(Xk)'ylt
p- j=1k=1 (2)
Subject to:  |9,] = p;

where u;(X;) = e‘(xk‘M/)TQ]fl(ijl(xj —M))) is the fuzzy
membership value of kth input sample X, to jth fuzzy rule,
v; specifies appropriate result value of kth input sample
(X,), and p; specifies scalar value with constant digit.

As the result training samples digits were treated as
membership values weights in object function and the con-
ditions could be stated for every fuzzy rule (FR)):

VX, X, €FR;: %f yi =y; then p,(X;) ~ Mj(xi) 3)
if yi >y then pu;(X;) > m;(x;)

To discard undesired optimum converging of 7 (Q; = 0),
constraint (|Q;| = p;) is included. In order to rectify the
optimization problem p determined in (2) by assuming
constraints, novel augmented objective function according
to Lagrange approach is demonstrated as trail:

R N

T= > ) -y =2 Qi1 —py) 4)

i=1 k=1 i=1

Which 7, is Lagrange multiplier it is essential for rectify
subsequent equations

oT
_— =O’
o0;

i

Vi=1,2,...,R (5)

Sourced on (1), (5) and considering Q; as symmetrical
form of matrix, subsequent equations will be determined
for ith fuzzy rule.

— =2 (X 07 (X — M)(X, — M) Q7 (6)

Patro et al.

Now from (5) and (6) the following equation is
obtained:

N
Zlu’i(Xk)'y;:Qi_l(Xk - M) (X, _Mi)TQi_l = niQi_l (7)
k=1

By multiplying Q; twice to left and right sides of (7), Q;
will be computed as trail:

1 N
Q= — - > (X)) i (X — M) (X, — M) (8)
i k=l
By defining Qi as shown below:

_ Z/{Ll i (X)) - vi (X — M) (X, — M)"

or " ©)
ZI{LI mi(Xe) - v
Equation (8) is rewritten as follows:
N
(X.)-v*
0, = oF x Zi=t XY (10)

;i

By substituting right-hand Eq. (10) in indicated con-
straint in Eq. (2), subsequent equations are attained:

o i k- yE\"

(Z= ) gy =p =
n;

Zfﬁ:lmsk'yl_ Pi & 11
; o/ (n

Sourced on Egs. (9) and (10), appropriate value of Q,
is determined as trails:

P 1/n
0,= 0] x (@) (12)

Equations (9), (12) and u,(X,) for input samples and
fuzzy rule are iteratively computed, till objective function
{ covergence.

3.2. Designing FNN Structure Sourced on Extracted
Interpretable and Intuitive Rules

Next acquiring matrix Q; for every fuzzy rule, matrix Q; is

decomposed with respect to Eigen values and Eigen vec-

tors as trails:

0= q),'A,'q)iT

= 07 = BN Do = DA AT PDT
—— Q»_I — (A71/2¢T)T(A71/2®T)

= Q' =TT,

(13)

Where @, specifies eigenvector matrix where every column
is equal to Q, eigenvector, A; specifies matrix with eigen
values, which is diagonal matrix that has Q; eigen values,
on diagonal, and I’; specifies matrix as trails:

I =A""?®pr

14
Q;l = F[Tri ( )
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Similar to the PCA, it is feasible to get rid of the Eigen
values lower when compared with a pretend threshold and
respective eigenvectors from A; and ®;, correspondingly,
for providing the dimension reduction ability. Dimension
reduction for every fuzzy rule causes rise in generalization
by avoiding small eigen values.

Based on Eq. (14), inseparably rule determined in
Eq. (1) is rewritten sourced on Eq. (14) in ith rule as trails:

wi(X) = e_(X_Mi)TQi_I(X_Mi)
e—(X = M) T,(X - M)

— o Inx-my?

— oIzl

n;
= [ e G’
j=1

= jl;ll M (15)

where I; specifies transform matrix to indicate ith non-
separable fuzzy rule as separable one, Z; = I'7 X specifies
extracted high level feature vector for ith fuzzy rule, ¥,
specifies transferred center of ith fuzzy rule and z;; and ¢,
specifies jth dimension of Z; and ¢, [14]. With Eq. (15), it
confirms inseparably fuzzy rule can be specified as sepa-
rable fuzzy rule based on high-level extracted features Z,.

The anticipated process acquires linear transform matri-
ces (I';) which is same as if PCA, however we have
numerous significant variations among them. Decomposed
matrix in PCA is covariance matrix with illustration of
complete training input samples (devoid of determining
output training samples), however decomposed matrix in
anticipated approach is weight matrix ©; that specifies
outline and control of ith fuzzy rule contours. Sourced
on output and input training samples Matrix Q; is mea-
sured, which belongs to ith fuzzy rule and not entire
sample trainings. Hence, basic PCA idea differs from sug-
gested approach. Significant differences among anticipated
approach and PCA is indicated as trails:

PCA decomposed matrix is computed according to tak-
ing in training samples, however decomposed matrix Q; is
attained on output and taking in training samples;

PCA decomposed matrix is computed on entire taking
in training samples, however matrix Q; is attained sourced
on taking in and taking out training samples which comes
under ith fuzzy rule;

PCA decomposed matrix is sample covariance matrix,
however matrix Q; specifies matrix that specifies outline
and control of ith fuzzy rule contours.

Result enforces PCA and anticipated approach with ‘m’
extracted fuzzy rules contours are performed by every
approach. outline and control of destination function cov-
ered region contours couldn’t be modelled, by hauling out
linear transform for every fuzzy rule sourced on PCA.
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It is feasible to fuzzy sets shapes for every high-level
obtained lineaments of every fuzzy concept by including
outline control parameter 3 as trails:

wi(X) = 1_[ /"Lij[/ (16)
j=1
Where u,; is derived as follows:

g =G (17)

Fuzzy sets shapes are flexible and considered as usual
Gaussian form. Hence, it is feasible to outline the fuzzy
sets among semi-triangular and semi-trapezoidal mode.
Moreover, it is understandable if 3 is equal to 1, member-
ship function is Gaussian. If parameter is selected to be
superior than 1 and it is considered to be nearer to trape-
zoidal and selected as lesser than 1, function shaper will be
nearer to triangular. Hence, it is parameter (8) the regula-
tor. Determining the membership function to diverse forms
in membership function can be proficient to offer fuzzy
rules of contours with complex outlines. Figure 1 depicts
diverse fuzzy sets shapes defined according to anticipated
membership function for diverse Regulator parameter (3)
values. Moreover, figure depicts samples of different fea-
sible contours shapes of fuzzy rules sourced on expansion
principle for 2 high-level lineaments and non-interactive.

This representation can haul out suitable and high-
level independent lineaments to create each fuzzy rule,
assuming association with input variables with every other
and output variable. Therefore, ith intuitive fuzzy rule is
demonstrated as trails:

FR;: if X belongs to the ith hill then y is w;

" ms
“ll 1 ’

- D I e T — 1
[ 1] —.—.
.l. - i | ]  } - | ] n ]
I_._._.-_'-I—.-I_\J-_'I B ™ :l
[ B = [ B

Fig. 1. Diverse probable outlines produced fuzzy sets and diverse fuzzy
rules contours with various values of B for two high-level features
z, and z, [14].
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Where ith hill in function landscape is w; (X). Thus, it
is feasible to re-formulate Rule; as trails:

FR;:if X epu/(X) =y is o, (18)

All above Figures 1-3 are considered for the purpose of
clearing the concepts of FNN. Input layer, Transformation
layer, Fuzzy sets layer, Fuzzy rules layer, and Output layer
(see Fig. 3) [14] are 5 diverse layers of anticipated model.

Patro et al.

Output layer acts as an essential role in determining sub-
sequent fuzzy rules part, and transformation (conversion)
layer, fuzzy sets and fuzzy rules layers works as premise
parts. Demonstration of every layer is elaborated below
trails:

I-Input layer: Taking in variables of network are layers
result values and specified as depicted below:

X =[x; X55 ..., x,]" (19)

{larea reefl Ty tmem

Yom il oty md

| {
| : : |
K i Es |
1 1
| ._.-l't-
| =l
] 1
PR ————
L] i
Sty Fariy iiden i

Fig. 2. Inseparably fuzzy rules extraction for interactive variables using transformation to diverse new spaces with novel high-level non-interactive

lineaments, and demonstrating separably fuzzy concepts in novel spaces [14].
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5
5

Fig. 3. The proposed fuzzy neural network architecture [14].

II-Transformation (conversion layer) layer: Every neuron
of the layer enforces linear transformation or conversion
on the intake variables to map the initial interactive input
variables. For ith fuzzy rule, the transformation is

Z,=T"X

T (20)

IlI-Fuzzy sets layer: Here, fuzzy sets with various shapes
were determined for every hauling out high-level outline
in fuzzy laws. The value of membership function for jth
dimension of ith high-level outline vector (ith fuzzy law)
is depicted as trails:

Bii —((Z:i—ts: 2
Wi = Ay . By) = i’ = e Gt 21

IV-Rules of Fuzzy or Fuzzy rules layer: Here every neuron
indicates a fuzzy rule. It calculates a membership value
according to the T-Norm operator which is enforced on
previous layer output. As features extracted using transfor-
mation (conversion) layer are reciprocal, it is satisfactory
to make use of T-Norm operator for constructing fuzzy
laws in extracted high-level outline spaces.

w0 = T (22)

V-Output (resultant layer) layer: It is having one linear
neuron in final layer that offers network output and func-
tions as an essential role of parameters of subsequent part.
Last network output is evaluated as trails:

R
y=y u" (23)
i=1

To initialize network factors, primarily local maximum
points are hauled out from training samples as fuzzy rules
centres [12]. For fuzzy rule, like structure has part param-
eter (W), n; parameters of fuzzy rule centre (w), n; regu-
lator parameters (B), and n x n; transformation matrix (7°)
parameter. Subsequently, the parameters, p for anticipated
structure is determined as trails:

p=R+(n+2)Y n (24)

i=1
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3.3. Fine-Tuning Method Using Hybrid

Optimization Method
ACO and Hybrid GA is novel algorithm to rectifying
the parameter tuning in establishing new fuzzy neural
network.

3.3.1. Genetic Algorithm

For simulating the evolution procedure and organism
natural selection [15], Genetic Algorithm (GA) is compu-
tational technique which is modelled to pursue series as
producing initial evaluation, population, crossover, selec-
tion, mutation, and regeneration [16]. Initial population
turn into significant solution and it is usually produced
randomly. Mutation and Crossover will be performed to
acquire novel and superior ones. GA idea is novel solu-
tion generation should be superior when contrast to pre-
vious one. This procedure is iterated till attaining certain
stopping criteria. GA is significantly suitable in diverse
optimization crisis as this approach doesn’t need superior
initial knowledge of problem which is rectified in nature;
which is treated as a benefit of use of GA. This algorithm
is possible to know the global optimum and utilized to
problem [17, 18].

3.3.2. Ant Colony Optimization (ACO)

In ACO, Ants uses some pheromone during walking in
line and broadcast with other ant in searching. Those who
couldn’t smell pheromone moves at random route. When
huge ants are pleasingly tracking shortest one, pheromones
of certain path improves, and ant will choose subsequent
city in accordance to particular probability, which is dis-
tance matrix, pheromone matrix function and parameters.
This process iterates till every ant visits each city one
time. This is initial cycle in algorithm, which proceed
till it reaches end criteria. Complete route is modified
as pheromone matrix is updated in each cycle. To solve
parameter tuning [8], ACO is dedicated. However, this
algorithm has different weaknesses, as like its performance
works according to the previous cycle, and it is easy to
convergent and stagnant, then requires a huge processing
time. And this creates great dispute for searching space
and ACO computation time.

3.3.3. Hybridization of Ant Colony Optimization and
Genetic Algorithm [HACOGA]

In Hybridization, GA gains merits to begin pheromone in
ACO matrix and rejoin ACO route [19]. Here, GA chro-
mosome helps to optimize amount of subsequent sample
for classification from every ant and for discarding depen-
dency on previous cycle. The diversity of the ant’s tour can
be preserved [20] from these chromosomes. Hybridiza-
tion is shortening in choosing changeable ACO parameter
which requires human knowledge and depends on coinci-
dence. ACO helps in temporary solution generator which
improves the implementation by executing GA operators
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iteratively until we reach end criteria. Anticipated GA and
ACO hybridization is somewhat effective by expanding
the crossover operator in GA (EXO) to generate superior
output produced by ACO. Here we get two steps for this
solution. Initially, we make use of the ACO to produce
solution that acquires local maxima. Solution generated in
this step is iterated and independent to one another. ACO
local optima solution is considered as GA population,
for attaining superior global optima. Tweak probability to
route outcomes in ACO to high, through this proposed
work. Subsequent section offers details of anticipated
work.

3.3.4. Hybridization Technique

Idea of this work is to determine a proper way to hybridize
ACO and GA for recognizing FNN solution to build the
combining specific process of Genetic Algorithm and ACO
to carry out GACO. Hybridization is enforced to few
variables and parameters of GA or ACO to share some
computation characteristics, i.e., GA the size of popula-
tion and ants numbers in ACO, number of cycles in ACO,
number of generations in GA and GA chromosome. Mod-
ification is represented in as shaded drawing [21, 22].

3.3.5. HACOGA

Demonstrating process as below:

1. The cities which are not visited and their indices are
determined as set termed allowed.

2. The city which is primarily visited is illustrated with
no. of gene 1 in initial gene groups openly.

If no. of gene 1 is ¢, then initially visited city is cth
index in permitted. If there is no gene in primary group,
then initially visited city is last index in facilitates.

3. Subsequently, quantity of gene(s) 1 is utilized in sub-
sequent genes and Eq. (26) to demonstrate cities that is
visited one after another.
4. As city will be defined as visited, then city index is
eliminated from allowed.
5. Terminal index enduring in allowed is final visited city.
In essential GA, chromosome specifies fuzzy neural net-
work solution indirectly.

To resolve ‘n’ FNN parameter tuning, the representation
of chromosome is modelled as trails:

1. Every chromosome comprises of (n — 1) gene
groups.

Nen=2_1 (25)

2. The quantity of gene present in ith group is similar to
(n —1i) bit, therefore the sum of amount group of genes
(N,.,) in chromosome (usage of Eq. (24)).

gen
Number of bit 1 is utilized in ith gene group to
demonstrate cities that is probable to be visited using
ants.
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Process to decode chromosome is provided to fuzzy
neural network solution:
1. Nonvisited city indices are depicted as a set termed
allowed.
2. ith city (visited) is demonstrated using quantity of
genes 1 in ith gene groups. If number of gene 1 is &, then
ith city (visited) is kth index in permitted. In case of ith,
group, if no gene is there, then ith city (visited) is final
index in permitted.
3. If we will arrange the city as a set visited, city index
is removed from allowed.

[7;(0]*[n;]° .
) ifj € allowed
P?j(t): Zkeallowedk[q-lk([)]a’[nlk]B k(26)
0 otherwise

Here a and S specifies parameters that manage rela-
tive significance of trail versus visibility, £ defines the ant
index, permitted k is set of nonvisited city that possibly
visited using kth ant, i specifies current terminal visited
city, j specifies the indeces of subsequent visited city that
visited from ith city, ¢ specifies time index, 7 specifies trail
intensity, n and is visibility.

4. Last city is final index remaining in permitted [23].

4. RESULTS AND DISCUSSION

The current section examines experimental output of pro-
posed method. The model is executed with the help of
JAVA. When distinguished with the current IC-FNN algo-
rithm with the proposed HACOGA algorithm are com-
pared to recall, precision, accuracy and F-measure for
abalone age prediction dataset. Abalone age is defined
through cutting shell of cone, staining, and counting num-
ber of rings via microscope-time-consuming and boring
task. Other factors, which are simpler to acquire, are uti-
lized to identify age. In Ref. [27], the attributes informa-
tion of abalone with data type, measurement explanations
of individuals terms are done very nicely. From the above
information, it is easy to calculate and predict the age of
abalone.

5. PERFORMANCE METRICS

Precision points to percentage of results, which are appro-
priate and is depicted as,

True positive

Precision = (27)

Recall points to percentage of entire relevant outcomes
accurately categorized with anticipated algorithm which
are determined as

true positive + false positive

True positive
Recall =

(28)

To describe harmonic precision mean and recall value
F-measure is used and is defined by

true positive 4 False Negative

True positive
F-measure =

(29)

true positive + False Negative

J. Comput. Theor. Nanosci. 17, 2756-2764, 2020
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Fig. 4. Precision results versus classification methods.

Table I. Performance comparison result values.

Methods ~ Precision (%) Recall (%) F-measure (%) Accuracy (%)
IC-ENN 52.2411 74.8435 61.5323 83.3213
HACOGA 58.7630 84.7639 69.4083 89.4052

Accuracy is a metric for evaluating classification mod-
els. Generally, accuracy is predictions fractions for this
model. Officially, accuracy has subsequent definition:

True positive + True Negative
Accuracy = wep IVT+t lu gauv (30)
ota

Figure 4 explains the comparative outcomes of antic-
ipated HACOGA method and present IC-FNN method
with respect to precision. From outcome, it confirmed that
anticipated HACOGA model generated superior precision

100 T

90 b

70 .

60 b

Recall (%)
3

B c-F\N
40 1 I +AcOoGA | ]
30 | E
20 E
10 f .

Methods

Fig. 5. Recall results versus classification methods.
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Fig. 6. F-measure results versus classification methods.

results of 58.7630% whereas current IC-FNN method
gives only 52.2411% (see Table I) correspondingly.

Figure 5 provides performance comparison outcomes of
anticipated HACOGA method and current IC-FNN method
with respect to Recall. From outcomes, it confirmed that
anticipated HACOGA model offers superior recall out-
comes of 84.7639% where current IC-FNN method gener-
ates only 74.8435%, correspondingly.

Figure 6 gives performance comparison outcomes of
anticipated HACOGA method and current IC-FNN method
with respect to F-measure. Based on the output, it con-
firms that the proposed HACOGA model generates higher
F-measure results of 69.4083% whereas current IC-FNN
method produces only 61.5323% correspondingly.

Figure 7 provides performance comparison outcomes of
anticipated HACOGA method and current IC-FNN method
with respect to accuracy. Based on the output, it con-
firms that the proposed HACOGA model generates higher

100 T

80 b

70 b

60 b

I (C-FNN
40 I HACOGA | T

30 b
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3

Methods

Fig. 7. Accuracy results versus classification methods.
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accuracy results of 89.4052% whereas current IC-FNN
method produces only 83.3213% correspondingly.

6. CONCLUSION AND FUTURE WORK

Here, an appropriate hybrid optimization problem is pre-
sented with the help of parallel and inseparably fuzzy
rules. To outline contours with various shapes, novel shape
able membership function with adaptive shape is brought-
in to determine fuzzy sets. Subsequently, according to the
hybrid optimization approach, extracted fuzzy rules param-
eters are fine-tuned. Anticipated method performance is
computed in time-series prediction and real-world regres-
sion problems and distinguished with subsequent cur-
rent approaches. Based on experiments, the anticipated
approach could build parsimonious structures with supe-
rior accuracy, in comparison to the current approaches.
In future work shall examine the Fuzzy Neural network to
beat the demerits of proposed model and also makes use
of the subset method based Fuzzy Neural Network model
in the field of image compression and control.
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