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Classification generally assigns objects to enormous predefined categories and it is pervasive crisis

that covers various application. Preparing the data for Classification and Prediction is the major

problem in classification. In order to rectify this issue, an approximate function is proposed using

IC-FNN. For acquiring correlated fuzzy rules and non-separable rules that comes under proper

optimization problem. The extracted fuzzy rule’s parameter was fine-tuned sourced on hierarchi-

cal Levenberg Marquardt (LM) learning method for enhancing performance. But here parameters

of fuzzy rules aren’t tuned perfectly. Hybridization of Ant Colony Optimization Genetic Algorithm

(HACOGA) is proposed here to rectify these issues. It tunes the parameters of the extracted fuzzy

rules. Hybridization is enforced to certain factors and ACO and GA variables that share same

characteristics in the computation. Experimental results shows that proposed HACOGA assist in

enhancing the performance of FNN with recall, precision, accuracy and F -measure for the Abalone

age prediction dataset.

Keywords: Classification, Novel FNN, Correlated Contours, Fuzzy Rules, Hybrid Optimization,

Correlated, Nonseparable, HACOGA.

1. INTRODUCTION

To spotlight on classes or categories, classification gener-

ally assigns items in a collection and targets at precisely

identifying every case target values in data. Fuzzy infer-

ence systems (FIS) is one amongst popular applications of

fuzzy-logic and fuzzy-set-theory, which acquires the diag-

nosis and off line method simulation, classification tasks,

various online decision making modern tools and con-

trol methods. FIS specifically based on two fold identities.

Else, it possesses an ability to manage the linguistic ideas.

It is universal approximates, because it performs the non-

linear mappings among outputs and inputs [1].

These two features assist in modelling two types of FIS

design. 1st FIS targets on competency of fuzzy concept

to design language processing [2]. FIS comprises of fuzzy

concepts which are constructed from gaining expertise

and we name it as fuzzy controllers or fuzzy expert sys-

tems, based on its last utilization. Expert knowledge was

cast off to design knowledge engineering for simulation.

Knowledge engineering works according to the classical

∗Author to whom correspondence should be addressed.

Boolean logic and it doesn’t suit to control the progres-

siveness in the primary process phenomena [3, 4]. Here,

gradual rules were brought-in in expert knowledge based

simulators and it points human knowledge restriction,

predominantly complexity in modelling complex process

interactions.

Appropriate generalization capability and high semantic

level were offered by FIS. Unfortunately, the tediousness

of huge systems tends to inadequate accuracy in simula-

tion outcomes. Expert knowledge works according to FIS,

which gives poor performances. Parameter evaluation and

structure identification were considered as two significant

problems in building an FIS. The former one works on

describing numerous fuzzy rules and it works on estimat-

ing deriving appropriate parameter values to build effectual

system [5].

For acquiring correlated fuzzy and non-separable rules

we bring-in proper optimization problem. But here param-

eters of fuzzy rules aren’t adjusted correctly. Hybridiza-

tion of Ant Colony Optimization Genetic Algorithm

(HACOGA) is proposed here to rectify these issues.

It tunes extracted fuzzy rules parameters. Hybridization
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enforces certain factors and GA and ACO variables,

which in turn, share similar computation characteristics.

The anticipated hybridization process is predominantly

enhances FNN performance.

2. LITERATURE REVIEW

A FNN having novelty model with parallel fuzzy concepts

(CFNN) which works on Levenberg–Marquardt (LM) opti-

mization approach was anticipated by Ebadzadeh and

Salimi-Badr [7]. This method gives an approximate non

linear function, particularly the functions with greater cor-

relation among the input variables with least amount of

fuzzy rules. Multivariable Gaussian fuzzy membership

function were established, which assumes the correlation

among the input variables and it will design non-separable

relations variables interaction. LM optimization approach

helps to get the knowledge factors of both premise

and fuzzy rule set. This algorithm helps us to enforce

the seven tested samples along with time-series pre-

diction, static function approximation, real-world com-

plex regression problem and non-linear dynamic system

identification.

A fresh fuzzy rule transfer approach for self-

construction fuzzy neural inference networks was

anticipated by Prasad et al. [8]. A novel FNN framework

is basically merging an Auto Regressive with exogenous

input (ARX) with nonlinear Tanh function in Takagi-

Sugeno (T-S) kind fuzzy part was proposed by Zhang

and Tao [9]. For optimizing parameters and structure

of FNN under unknown plant dynamics simultaneously,

an improved genetic algorithm is designed. ARX plus

input structure the nonlinear function sub-model, num-

ber of fuzzy rules, and membership function parame-

ters was enhanced by neighbourhood search operator,

hybrid encoding/decoding and preserve operator. Accord-

ing to experimental output it is concluded that anticipated

approach is better in structure simplification, generaliza-

tion capability and modelling precision. Various types of

classification on machine methods are defined with chal-

lenges,drawbacks with advantages are defined [26].

An efficient optimization technique was brought-in by

Han et al. [10]. In learning process, this SASOA-FNN

helps to systematize structure and manage parameters con-

currently. Third, SASOA-FNN convergence is confirmed

with updated and fixed structure and guidelines for param-

eters choosing. At last, experiments were executed on var-

ious nonlinear systems for checking the effectiveness. The

comparison result states that proposed SASOA-FNN gives

better performance.

An enhanced self-construction fuzzy neural infer-

ence network version, termed as soft-boosted SONFIN

(SB-SONFIN) was proposed by Prasad et al. [11]. For

minimizing the rate of error and for improving quick

learning, design softly boosts learning process of SON-

FIN. By considering fuzzy rules and primary weights

SB-SONFIN improves SONFIN learning process, which

has two significant SONFIN parameters, SB-SONFIN pro-

gresses learning procedure using: 1) weights initializing

with fuzzy sets width indeed of random digits and 2) to

enhance the rate of parameter with amount of fuzzy rules.

On numerous real world and benchmark datasets, rec-

ommended soft boosting strategy is validated. According

to experimental output it is concluded that SB-SONFIN

possesses ability to surpass other known approaches on

diverse datasets. In image processing to balance the energy

accuracy for the quality improvement of images are

defined [25].

An proficient learning method for constructing self-

organizing FNNs was established by Han et al. [12], where

we adapt algorithm having second order with malleable

learning rate, parameters and it can be determined the net-

work size with equal time in learning procedure. Initially,

entire SOFNN parameters were adapted with help of SOA

strategy for accomplishing the fast convergence through

influential search scheme. Next, SOFNN structure may be

self regulated with help of relative importance index of

every rules. Later, a new layer is introduced to find the

edge detection of the image processing [24].

Self-regulating FNN with adaptive gradient algorithm

for nonlinear systems modelling was suggested by Han

et al. [13]. Initially, fuzzy rules (PFR) potentially help to

get normalized layer output and to reduce error ratio in

the process of training. Structure learning concept is estab-

lished to define the size of network sourced on PFR. Next,

an adaptive gradient having malleable nature with flexible

learning rate is created to correct SOFNN-AGA parameter.

Furthermore, in self-organizing structure and fixed struc-

ture cases, theoretical analysis on SOFNN-AGA conver-

gence is provided to demonstrate efficiency. Fuzzy method

with HASO used to minimize the space and complexity of

the FNN [27].

3. PROPOSED METHODOLOGY

Fuzzy Neural Network (FNN) was explained in this

section for function approximation using 3 processes: ini-

tially, interpretable and intuitive fuzzy rules. Subsequently,

according to fuzzy rules extraction, an appropriate frame-

work is built. At last, initial values are fine-tuned accord-

ing to Hybridization of Ant Colony Optimization Genetic

Algorithm [HACOGA].

3.1. Extracting Intuitive Fuzzy Rules and
Initial Interpretable

If the destination function surface (landscape in nature) is

considered as landscape of the mountain, then every hill

in landscape will be appropriate interpretable and intuitive

fuzzy rule for approximate the function. So, the demanded

model rules these should be non-separable and correlated.
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These inseparably and correlated fuzzy concepts will be

determined is as below


�Y �= e−�Y−M�T �−1�Y−M� (1)

where the M specifies hill centre and � specifies weight

matrix to generate inseparably fuzzy rule correlated con-

tours. Certainly, � defines outline and control of fuzzy

rule contours. Usually, hills centres in function landscape

points superior output values in neighbourhoods. Hence,

local maximums were chosen from training samples, is

appropriate candidates for rule centres. Accordingly, rules

centre, (Mj for jth rule), gets training samples [14]. Sub-

sequently, matrix �j for jth fuzzy rule (j = 1�2�3� � � � � r),

defines fuzzy rule contour to contours which is of covered

hill in the landscape function. For haul out fuzzy concepts

with contours same as closed region of destination func-

tion, matrix �j for jth fuzzy concept is determined on

rectifying subsequent optimization crisis:

�


⎧⎪⎨⎪⎩Max � =
r∑

j=1

N∑
k=1


j�Xk� · y∗k
Subject to 
 ��j � = �j

(2)

where 
j�Xk�= e−�Xk−Mj�
T
�−1
j ��−1

j �xj −Mj�� is the fuzzy

membership value of kth input sample Xk to jth fuzzy rule,

y∗k specifies appropriate result value of kth input sample

(Xk), and �j specifies scalar value with constant digit.

As the result training samples digits were treated as

membership values weights in object function and the con-

ditions could be stated for every fuzzy rule (FRj):

∀Xk� Xi ∈ FRj 


{
if y∗k = y∗i then 
i�Xk�≈ 
j�xi�

if y∗k > y∗i then 
i�Xk� > 
j�xi�
(3)

To discard undesired optimum converging of � (Qj = 0),

constraint (�Qj � = pj) is included. In order to rectify the

optimization problem � determined in (2) by assuming

constraints, novel augmented objective function according

to Lagrange approach is demonstrated as trail:

� =
R∑
i=1

N∑
k=1


i�xk� · y∗k −
R∑
i=1

�i��Qi�−�i� (4)

Which �i is Lagrange multiplier it is essential for rectify

subsequent equations

��

��i

= 0� ∀i = 1�2� � � � �R (5)

Sourced on (1), (5) and considering Qi as symmetrical

form of matrix, subsequent equations will be determined

for ith fuzzy rule.

��

�Qi

=
N∑
k=1


i�Xk� · y∗kQ−1
i �Xk−Mi��Xk −Mi�

TQ−1
i (6)

Now from (5) and (6) the following equation is

obtained:

N∑
k=1


i�Xk� · y∗kQ−1
i �Xk−Mi��Xk −Mi�

TQ−1
i = niQ

−1
i (7)

By multiplying Qi twice to left and right sides of (7), Qi

will be computed as trail:

Qi =
1

�i

·
N∑
k=1


i�Xk� · y∗k�Xk−Mi��Xk−Mi�
T (8)

By defining Q+i
i as shown below:

Q+
i =

∑N
k=1 
i�Xk� · y∗k�Xk−Mi��Xk −Mi�

T∑N
k=1 
i�Xk� · y∗k

(9)

Equation (8) is rewritten as follows:

Qi = Q+
i ×

∑N
k=1 
i�Xk� · y∗k

�i

(10)

By substituting right-hand Eq. (10) in indicated con-

straint in Eq. (2), subsequent equations are attained:(∑N
k=1 
i� k · y∗k

�i

)n

�Q+
I � = �i =⇒∑N

K=1 
i� k · y∗k
�i

=
(

�i

�Q+
i �
)1/n

(11)

Sourced on Eqs. (9) and (10), appropriate value of Qi

is determined as trails:

QI =Q+
i ×

(
PI

�Q+
I �
)1/n

(12)

Equations (9), (12) and 
i(Xk) for input samples and

fuzzy rule are iteratively computed, till objective function

� covergence.

3.2. Designing FNN Structure Sourced on Extracted
Interpretable and Intuitive Rules

Next acquiring matrix Qi for every fuzzy rule, matrix Qi is

decomposed with respect to Eigen values and Eigen vec-

tors as trails:

�i =�i�i�
T
i

=⇒ �−1
i =�i�

−1
i �T

i �
−1
i =�i�

−1/2

i �
−1/2

i �T
i

=⇒ �−1
i = ��

−1/2

i �T
i �

T ��
−1/2

i �T
i �

=⇒Q−1
i = �T

i �i

(13)

Where �i specifies eigenvector matrix where every column

is equal to Qi eigenvector, �i specifies matrix with eigen

values, which is diagonal matrix that has Qi eigen values,

on diagonal, and �i specifies matrix as trails:{
�i =�

−1/2

i �T
i

�−1
I = �T

i �i
(14)
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Similar to the PCA, it is feasible to get rid of the Eigen

values lower when compared with a pretend threshold and

respective eigenvectors from �i and �i, correspondingly,

for providing the dimension reduction ability. Dimension

reduction for every fuzzy rule causes rise in generalization

by avoiding small eigen values.

Based on Eq. (14), inseparably rule determined in

Eq. (1) is rewritten sourced on Eq. (14) in ith rule as trails:


i�X� = e−�X−Mi�
T

�−1
i �X−Mi�

= e− �X−Mi�
T �T

i �i�X−Mi�

= e−��i�X−Mi��2

= e−�Zi−�i�2

= ni

�
j=1

e−�zij−�ij �
2

= i

�
j=1


ij (15)

where �i specifies transform matrix to indicate ith non-

separable fuzzy rule as separable one, Zi = �T
i X specifies

extracted high level feature vector for ith fuzzy rule, �i

specifies transferred center of ith fuzzy rule and zij and �ij

specifies jth dimension of Zi and �i [14]. With Eq. (15), it

confirms inseparably fuzzy rule can be specified as sepa-

rable fuzzy rule based on high-level extracted features Zi.

The anticipated process acquires linear transform matri-

ces (�i) which is same as if PCA, however we have

numerous significant variations among them. Decomposed

matrix in PCA is covariance matrix with illustration of

complete training input samples (devoid of determining

output training samples), however decomposed matrix in

anticipated approach is weight matrix �i that specifies

outline and control of ith fuzzy rule contours. Sourced

on output and input training samples Matrix Qi is mea-

sured, which belongs to ith fuzzy rule and not entire

sample trainings. Hence, basic PCA idea differs from sug-

gested approach. Significant differences among anticipated

approach and PCA is indicated as trails:

PCA decomposed matrix is computed according to tak-

ing in training samples, however decomposed matrix Qi is

attained on output and taking in training samples;

PCA decomposed matrix is computed on entire taking

in training samples, however matrix Qi is attained sourced

on taking in and taking out training samples which comes

under ith fuzzy rule;

PCA decomposed matrix is sample covariance matrix,

however matrix Qi specifies matrix that specifies outline

and control of ith fuzzy rule contours.

Result enforces PCA and anticipated approach with ‘m’

extracted fuzzy rules contours are performed by every

approach. outline and control of destination function cov-

ered region contours couldn’t be modelled, by hauling out

linear transform for every fuzzy rule sourced on PCA.

It is feasible to fuzzy sets shapes for every high-level

obtained lineaments of every fuzzy concept by including

outline control parameter � as trails:


+
i �X� =

ni∏
j=1



�ij

ij (16)

Where 
ij is derived as follows:


ij = e−�Zij−�ij �
2

(17)

Fuzzy sets shapes are flexible and considered as usual

Gaussian form. Hence, it is feasible to outline the fuzzy

sets among semi-triangular and semi-trapezoidal mode.

Moreover, it is understandable if � is equal to 1, member-

ship function is Gaussian. If parameter is selected to be

superior than 1 and it is considered to be nearer to trape-

zoidal and selected as lesser than 1, function shaper will be

nearer to triangular. Hence, it is parameter (�) the regula-

tor. Determining the membership function to diverse forms

in membership function can be proficient to offer fuzzy

rules of contours with complex outlines. Figure 1 depicts

diverse fuzzy sets shapes defined according to anticipated

membership function for diverse Regulator parameter (�)

values. Moreover, figure depicts samples of different fea-

sible contours shapes of fuzzy rules sourced on expansion

principle for 2 high-level lineaments and non-interactive.

This representation can haul out suitable and high-

level independent lineaments to create each fuzzy rule,

assuming association with input variables with every other

and output variable. Therefore, ith intuitive fuzzy rule is

demonstrated as trails:

FRi 
 if X belongs to the ith hill then y is �i

Fig. 1. Diverse probable outlines produced fuzzy sets and diverse fuzzy

rules contours with various values of � for two high-level features

z1 and z2 [14].

J. Comput. Theor. Nanosci. 17, 2756–2764, 2020 2759
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Where ith hill in function landscape is 
+
i �X�. Thus, it

is feasible to re-formulate Rulei as trails:

FRi 
 if X ∈ 
+
i �X�=⇒ y is �i (18)

All above Figures 1–3 are considered for the purpose of

clearing the concepts of FNN. Input layer, Transformation

layer, Fuzzy sets layer, Fuzzy rules layer, and Output layer

(see Fig. 3) [14] are 5 diverse layers of anticipated model.

Fig. 2. Inseparably fuzzy rules extraction for interactive variables using transformation to diverse new spaces with novel high-level non-interactive

lineaments, and demonstrating separably fuzzy concepts in novel spaces [14].

Output layer acts as an essential role in determining sub-

sequent fuzzy rules part, and transformation (conversion)

layer, fuzzy sets and fuzzy rules layers works as premise

parts. Demonstration of every layer is elaborated below

trails:

I-Input layer: Taking in variables of network are layers

result values and specified as depicted below:

X = �xi� x2� � � � � xn�
T (19)

2760 J. Comput. Theor. Nanosci. 17, 2756–2764, 2020
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Fig. 3. The proposed fuzzy neural network architecture [14].

II-Transformation (conversion layer) layer: Every neuron

of the layer enforces linear transformation or conversion

on the intake variables to map the initial interactive input

variables. For ith fuzzy rule, the transformation is{
Zi = �T X

�i = �T
i Mi

(20)

III-Fuzzy sets layer: Here, fuzzy sets with various shapes

were determined for every hauling out high-level outline

in fuzzy laws. The value of membership function for jth

dimension of ith high-level outline vector (ith fuzzy law)

is depicted as trails:


+
ij = A�zij ��ij ��ij�= 


�ij

ij = e−��Zij−�ij �
2��ij (21)

IV-Rules of Fuzzy or Fuzzy rules layer: Here every neuron

indicates a fuzzy rule. It calculates a membership value

according to the T-Norm operator which is enforced on

previous layer output. As features extracted using transfor-

mation (conversion) layer are reciprocal, it is satisfactory

to make use of T-Norm operator for constructing fuzzy

laws in extracted high-level outline spaces.


+
i �X�= ni

�
j=1


+
ij (22)

V-Output (resultant layer) layer: It is having one linear

neuron in final layer that offers network output and func-

tions as an essential role of parameters of subsequent part.

Last network output is evaluated as trails:

y =
R∑
i=1



+�i

i (23)

To initialize network factors, primarily local maximum

points are hauled out from training samples as fuzzy rules

centres [12]. For fuzzy rule, like structure has part param-

eter (W ), ni parameters of fuzzy rule centre ���, ni regu-

lator parameters (�), and n×ni transformation matrix (T )

parameter. Subsequently, the parameters, p for anticipated

structure is determined as trails:

p = R+ �n+2�
R∑
i=1

ni (24)

3.3. Fine-Tuning Method Using Hybrid
Optimization Method

ACO and Hybrid GA is novel algorithm to rectifying

the parameter tuning in establishing new fuzzy neural

network.

3.3.1. Genetic Algorithm
For simulating the evolution procedure and organism

natural selection [15], Genetic Algorithm (GA) is compu-

tational technique which is modelled to pursue series as

producing initial evaluation, population, crossover, selec-

tion, mutation, and regeneration [16]. Initial population

turn into significant solution and it is usually produced

randomly. Mutation and Crossover will be performed to

acquire novel and superior ones. GA idea is novel solu-

tion generation should be superior when contrast to pre-

vious one. This procedure is iterated till attaining certain

stopping criteria. GA is significantly suitable in diverse

optimization crisis as this approach doesn’t need superior

initial knowledge of problem which is rectified in nature;

which is treated as a benefit of use of GA. This algorithm

is possible to know the global optimum and utilized to

problem [17, 18].

3.3.2. Ant Colony Optimization (ACO)
In ACO, Ants uses some pheromone during walking in

line and broadcast with other ant in searching. Those who

couldn’t smell pheromone moves at random route. When

huge ants are pleasingly tracking shortest one, pheromones

of certain path improves, and ant will choose subsequent

city in accordance to particular probability, which is dis-

tance matrix, pheromone matrix function and parameters.

This process iterates till every ant visits each city one

time. This is initial cycle in algorithm, which proceed

till it reaches end criteria. Complete route is modified

as pheromone matrix is updated in each cycle. To solve

parameter tuning [8], ACO is dedicated. However, this

algorithm has different weaknesses, as like its performance

works according to the previous cycle, and it is easy to

convergent and stagnant, then requires a huge processing

time. And this creates great dispute for searching space

and ACO computation time.

3.3.3. Hybridization of Ant Colony Optimization and
Genetic Algorithm [HACOGA]

In Hybridization, GA gains merits to begin pheromone in

ACO matrix and rejoin ACO route [19]. Here, GA chro-

mosome helps to optimize amount of subsequent sample

for classification from every ant and for discarding depen-

dency on previous cycle. The diversity of the ant’s tour can

be preserved [20] from these chromosomes. Hybridiza-

tion is shortening in choosing changeable ACO parameter

which requires human knowledge and depends on coinci-

dence. ACO helps in temporary solution generator which

improves the implementation by executing GA operators

J. Comput. Theor. Nanosci. 17, 2756–2764, 2020 2761
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iteratively until we reach end criteria. Anticipated GA and

ACO hybridization is somewhat effective by expanding

the crossover operator in GA (EXO) to generate superior

output produced by ACO. Here we get two steps for this

solution. Initially, we make use of the ACO to produce

solution that acquires local maxima. Solution generated in

this step is iterated and independent to one another. ACO

local optima solution is considered as GA population,

for attaining superior global optima. Tweak probability to

route outcomes in ACO to high, through this proposed

work. Subsequent section offers details of anticipated

work.

3.3.4. Hybridization Technique
Idea of this work is to determine a proper way to hybridize

ACO and GA for recognizing FNN solution to build the

combining specific process of Genetic Algorithm and ACO

to carry out GACO. Hybridization is enforced to few

variables and parameters of GA or ACO to share some

computation characteristics, i.e., GA the size of popula-

tion and ants numbers in ACO, number of cycles in ACO,

number of generations in GA and GA chromosome. Mod-

ification is represented in as shaded drawing [21, 22].

3.3.5. HACOGA
Demonstrating process as below:

1. The cities which are not visited and their indices are

determined as set termed allowed.

2. The city which is primarily visited is illustrated with

no. of gene 1 in initial gene groups openly.

If no. of gene 1 is c, then initially visited city is cth

index in permitted. If there is no gene in primary group,

then initially visited city is last index in facilitates.

3. Subsequently, quantity of gene(s) 1 is utilized in sub-

sequent genes and Eq. (26) to demonstrate cities that is

visited one after another.

4. As city will be defined as visited, then city index is

eliminated from allowed.

5. Terminal index enduring in allowed is final visited city.

In essential GA, chromosome specifies fuzzy neural net-

work solution indirectly.

To resolve ‘n’ FNN parameter tuning, the representation

of chromosome is modelled as trails:

1. Every chromosome comprises of (n − 1) gene

groups.

Ngen =
n−1∑
i=1

i (25)

2. The quantity of gene present in ith group is similar to

(n− i) bit, therefore the sum of amount group of genes

(Ngen) in chromosome (usage of Eq. (24)).

Number of bit 1 is utilized in ith gene group to

demonstrate cities that is probable to be visited using

ants.

Process to decode chromosome is provided to fuzzy

neural network solution:

1. Nonvisited city indices are depicted as a set termed

allowed.

2. ith city (visited) is demonstrated using quantity of

genes 1 in ith gene groups. If number of gene 1 is k, then

ith city (visited) is kth index in permitted. In case of ith,

group, if no gene is there, then ith city (visited) is final

index in permitted.

3. If we will arrange the city as a set visited, city index

is removed from allowed.

�k
ij �t�=

⎧⎪⎨⎪⎩
��ij �t��

� ·��ij �
�∑

k∈allowedk
��lk�t��

� ·��lk�
�

ifj ∈ allowedk

0 otherwise

(26)

Here � and � specifies parameters that manage rela-

tive significance of trail versus visibility, k defines the ant

index, permitted k is set of nonvisited city that possibly

visited using kth ant, i specifies current terminal visited

city, j specifies the indeces of subsequent visited city that

visited from ith city, t specifies time index, � specifies trail

intensity, � and is visibility.

4. Last city is final index remaining in permitted [23].

4. RESULTS AND DISCUSSION

The current section examines experimental output of pro-

posed method. The model is executed with the help of

JAVA. When distinguished with the current IC-FNN algo-

rithm with the proposed HACOGA algorithm are com-

pared to recall, precision, accuracy and F -measure for

abalone age prediction dataset. Abalone age is defined

through cutting shell of cone, staining, and counting num-

ber of rings via microscope-time-consuming and boring

task. Other factors, which are simpler to acquire, are uti-

lized to identify age. In Ref. [27], the attributes informa-

tion of abalone with data type, measurement explanations

of individuals terms are done very nicely. From the above

information, it is easy to calculate and predict the age of

abalone.

5. PERFORMANCE METRICS

Precision points to percentage of results, which are appro-

priate and is depicted as,

Precision = True positive

true positive+ false positive
(27)

Recall points to percentage of entire relevant outcomes

accurately categorized with anticipated algorithm which

are determined as

Recall = True positive

true positive+False Negative
(28)

To describe harmonic precision mean and recall value

F -measure is used and is defined by

F -measure = True positive

true positive+False Negative
(29)
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Fig. 4. Precision results versus classification methods.

Table I. Performance comparison result values.

Methods Precision (%) Recall (%) F -measure (%) Accuracy (%)

IC-FNN 52.2411 74.8435 61.5323 83.3213

HACOGA 58.7630 84.7639 69.4083 89.4052

Accuracy is a metric for evaluating classification mod-

els. Generally, accuracy is predictions fractions for this

model. Officially, accuracy has subsequent definition:

Accuracy = True positive+True Negative

Total
(30)

Figure 4 explains the comparative outcomes of antic-

ipated HACOGA method and present IC-FNN method

with respect to precision. From outcome, it confirmed that

anticipated HACOGA model generated superior precision
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Fig. 5. Recall results versus classification methods.
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Fig. 6. F -measure results versus classification methods.

results of 58.7630% whereas current IC-FNN method

gives only 52.2411% (see Table I) correspondingly.

Figure 5 provides performance comparison outcomes of

anticipated HACOGA method and current IC-FNN method

with respect to Recall. From outcomes, it confirmed that

anticipated HACOGA model offers superior recall out-

comes of 84.7639% where current IC-FNN method gener-

ates only 74.8435%, correspondingly.

Figure 6 gives performance comparison outcomes of

anticipated HACOGA method and current IC-FNN method

with respect to F -measure. Based on the output, it con-

firms that the proposed HACOGA model generates higher

F -measure results of 69.4083% whereas current IC-FNN

method produces only 61.5323% correspondingly.

Figure 7 provides performance comparison outcomes of

anticipated HACOGA method and current IC-FNN method

with respect to accuracy. Based on the output, it con-

firms that the proposed HACOGA model generates higher
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Fig. 7. Accuracy results versus classification methods.
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accuracy results of 89.4052% whereas current IC-FNN

method produces only 83.3213% correspondingly.

6. CONCLUSION AND FUTURE WORK

Here, an appropriate hybrid optimization problem is pre-

sented with the help of parallel and inseparably fuzzy

rules. To outline contours with various shapes, novel shape

able membership function with adaptive shape is brought-

in to determine fuzzy sets. Subsequently, according to the

hybrid optimization approach, extracted fuzzy rules param-

eters are fine-tuned. Anticipated method performance is

computed in time-series prediction and real-world regres-

sion problems and distinguished with subsequent cur-

rent approaches. Based on experiments, the anticipated

approach could build parsimonious structures with supe-

rior accuracy, in comparison to the current approaches.

In future work shall examine the Fuzzy Neural network to

beat the demerits of proposed model and also makes use

of the subset method based Fuzzy Neural Network model

in the field of image compression and control.
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