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Abstract
Many pansharpening algorithms are based on the principle of extracting spatial details from panchromatic (PAN) images

and injecting them into multispectral (MS) images. In this paper, we present two fusion approach based on same principle

by integrating standard principle component analysis (PCA) with decimated and undecimated rotated wavelet transform.

When decimated/subsampled rotated wavelet transform (SSRWT) is used for fusion of MS and PAN images, three visual

artifacts get introduced in the fused image namely color distortion, shifting effect and shift distortion. To eliminate color

distortion, SSRWT is integrated with standard PCA, i.e., PCA–SSRWT. Color distortion is significantly mitigated, but

shifting effect and shift distortion persist in the fused image of PCA–SSRWT. After employing undecimated/nonsub-

sampled rotated wavelet transform (NSRWT), shifting effect and shift distortion get eliminated with minimum color

distortion. However, fused image as a result of NSRWT is spectrally high but spatially low. In order to improve spatial

quality and remove visual artifacts observed in SSRWT and PCA–SSRWT, NSRWT is integrated with standard PCA, i.e.,

PCA–NSRWT. Visual and quantitative analysis is carried out to validate the quality of fused image for all the algorithms.

Visual interpretation suggests that fused image obtained using PCA–NSRWT is superior to fused images of SSRWT, PCA

and NSRWT. The overall quantitative analysis manifests that the PCA–NSRWT is consistent with visual interpretation and

performs better than state-of-the-art methods. PCA–NSRWT not only removes visual artifacts but also improves spectral

and spatial quality of the fused image compared to individual PCA, SSRWT, NSRWT and PCA–SSRWT. Based on visual

and quantitative analysis, it is observed that PCA works better with undecimated compared to decimated rotated wavelet

transform for fusion.

Keywords Nonsubsampled rotated wavelet transform (NSRWT) � Principal component analysis (PCA) � Satellite image

fusion � Shift distortion � Shifting effect � Subsampled rotated wavelet transform (SSRWT)

Introduction

Remote sensing plays a significant role in examining sur-

face of earth through images captured by sensors on board

of satellite. Sensors have specific objectives as different

sensors are characterized to record various features about

earth’s surface (Pohl & Van Genderen, 2016). Based on

objective of sensors, they have different spectral, spatial

resolution and information content is reciprocal to each

other. Many earth observation satellites such as QuickBird,

WorldView-3, Pleiades-1A, IKONOS, SPOT-5, LAND-

SAT-8 provide spectral information at resolution of

1.24–30 m through several MS bands and spatial infor-

mation at resolution of 0.5–15 m using single PAN band.

However, no sensor provides information which is
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spectrally as well as spatially high at once due to limitation

of sensor technology.

High spectral and spatial information is desirable for

many applications. Applications such as land-use or land-

cover in which spectral information is of more importance,

while high spatial information is more suited for applica-

tions such as object recognition and to identify various

features and structures in urban study. A single image

either with high spectral or spatial information cannot meet

the needs of various applications. Therefore, it is obligatory

to combine the spectral and spatial information for such

applications.

To combine the high spectral and spatial information,

image fusion is a promising pre-processing tool for many

applications. According to Pohl and Van Genderen (1998),

image fusion is a process of combining complementary

information from two or more images into a single fused

image. However, the definition does not deal with the

quality of the fused image (Wald, 1999). Mangolini (1994)

focused not only on combining two or more images but

also on the quality of the fused image. Hence, it is

imperative to not only combine but also improve the

spectral and spatial quality of fused image. In general, MS

imaging sensors record information which is spectrally

high and spatially low whereas PAN imaging sensors

record information which is spectrally low but spatially

high. High spectral content of MS image can be combined

with high spatial content of PAN image to get the fused

image which is superior in quality to individual MS and

PAN images (Mangolini, 1994). When this fusion is per-

formed using MS and PAN images, it is popularly known

as pansharpening.

Pansharpening can be considered as special case of

image fusion. Many pansharpening methods have been

proposed by several researchers and still coping with

improving spectral and spatial quality of the fused image.

Most of the state-of-the-art fusion methods give good result

but still lack in preserving spectral quality due to variations

in gray values between MS and PAN images. Recently,

fusion algorithm based on Bayesian-based methods, sparse

representation/reconstruction has been proposed (Vici-

nanza et al., 2015). Even though these fusion algorithms

show promising results, they are unable to find their ways

in becoming practically operational due to their complex

architecture and are computationally expensive. Traditional

pansharpening algorithms are well reviewed and tested, so

many researchers are still focusing on the state-of-the-art

pansharpening methods for enhancing spectral and spatial

quality of the fused image. So to achieve better quality of

the fused image, many researchers proposed several hybrid

pansharpening algorithms.

In this paper, two hybrid satellite image fusion methods

are proposed namely PCA–SSRWT and PCA–NSRWT.

The proposed fusion algorithms take benefit of shift

invariance and directionality property of SSRWT and

NSRWT along with PCA to inject high spatial character-

istics of PAN image into spatially low MS image using

dimensionality reduction property. Fused image obtained

using SSRWT suffers from three visual artifacts namely

color distortion, shifting effect and shift distortion. To

overcome these visual artifacts and to improve the quality

of the fused image, combination of component substitution

(CS)-based method, PCA with multiresolution analysis

(MRA)-based method, SSRWT and NSRWT are used. The

proposed algorithms preserve spectral information of MS

using SSRWT and NSRWT along with PCA taking care of

spatial information of PAN image. Therefore, the resulting

fused image contains high spectral and spatial information.

The major contributions of this paper are summarized as:

1. Color distortion observed in the fused image of

SSRWT is alleviated by a new hybrid pansharpening

algorithm, PCA–SSRWT.

2. Visual artifacts namely shifting effect and shift distor-

tion are noticed in SSRWT, and PCA–SSRWT are

addressed by second hybrid pansharpening algorithm,

PCA–NSRWT. It not only eliminates these artifacts

but also improves spectral and spatial quality of the

resultant fused image.

The remainder of this paper is organized as follows.

‘‘Related Work’’ section deals with literature survey of

fusion algorithms for satellite images. In ‘‘Standard PCA’’

and ‘‘Subsampled Rotated Wavelet Transform (SSRWT)’’

sections, standard PCA and rotated wavelet transform are

reviewed, respectively. In ‘‘Proposed Fusion Algorithms’’

section, the proposed hybrid algorithms for satellite image

fusion are presented. ‘‘Result and Discussion’’ section

comments on experimental results and analysis of different

algorithms using fusion metrics. Concluding remarks are

reported in ‘‘Conclusion’’ section.

Related Work

Several researchers have proposed pansharpening algo-

rithms using different mathematical tools for various

applications such as urban classification, change detection.

(Pohl & Van Genderen, 2016). A comparative study of

pansharpening algorithms has been reviewed by Pohl and

Van Genderen (2016), Vivone et al. (2015), Aiazzi et al.

(2012). Many researchers have tried to classify pansharp-

ening algorithms into various classes (Zhang & Huang,

2015). The two major approaches which are widely used in

satellite image fusion are CS and MRA. The first approach

depends on substitution of a component of MS image by

high spatial PAN image. Many researchers have proposed
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fusion algorithms based on image transformation which

include intensity-hue-saturation (IHS) (Carper et al., 1990),

Gram–Schmidt transform (GST) (Laben & Brower, 2000),

adaptive GS (Garzelli et al., 2008), PCA (Shah et al.,

2008), etc. Algorithms belonging to this class are

straightforward, less complicated and easy to implement.

However, the fused images as a result of CS-based methods

are visually attractive but are spectrally distorted.

In the second approach, input images are decomposed at

different scales followed by feature extraction from PAN

image and MS image. Fused images obtained using MRA-

based methods provide spectral as well as spatial infor-

mation simultaneously. For instance, wavelet-based fusion

algorithms (Aiazzi et al., 2002; Amolins et al., 2007;

Nunez et al., 1999) and pyramid-based fusion methods

(Burt & Adelson, 1983) belong to class of MRA fusion

algorithms and both of them have their own advantages and

disadvantages. Fused image obtained by pyramid fusion

algorithm includes extraneous edge information and orig-

inates blocking artifacts as number of decomposition levels

increases. Treating these as a major concern, researchers

are exploring wavelet-based fusion techniques for the last

two decades. Fusion algorithm based on wavelet includes

discrete wavelet transform (DWT) which preserves spectral

as well as spatial information but is shift variant and has

poor directionality (Li et al., 1995; Mallat, 1989). To

overcome the limitations of DWT, stationary wavelet

transform (SWT) was proposed in Nason and Silverman

(1995), where decomposition was performed without sub-

sampling. SWT is computationally expensive than DWT as

it is influenced by number of decomposition levels (Prad-

han et al., 2006). Kingsbury (1999) proposed dual-tree

complex wavelet transform (DT-CWT) which is shift

invariant, computationally efficient and has better direc-

tionality property. The contourlet transform (CT) (Do &

Vetterli, 2005) is a multiscale and multidirectional trans-

form where point discontinuities are captured by Laplacian

pyramid (LP) (Burt & Adelson, 1983) followed by use of

directional filter bank (DFB) (Bamberger & Smith, 1992)

to link point discontinuities into linear structure. However,

subsampling process in both LP and DFB makes the CT

shift variant which results in ringing artifacts. To overcome

problem of CT, Da Cunha et al. (2006) proposed NSCT

which is shift invariant, multiscale and multidirectional

framework. Pansharpening performed using NSCT shows

good results by preserving spectral features by compro-

mising spatial quality of the fused image. Computational

complexity of NSCT is high as compared to other wavelet-

based fusion methods. To eliminate the computational

burden and increase the number of directional information,

the shearlet transform (ST) was proposed Labate et al.

(2005). ST working can be divided into two phases:

pyramid filter banks (PFB) and shearing filter banks (SFB).

ST lacks shift-invariance due to subsampling operation in

both PFB and SFB. Easley et al. (2008) proposed non-

subsampling shearlet transform (NSST) which omits sam-

pling operation. NSST has shown good fusion result with

low computational burden. However, designing good filter

for the NSST is a challenging task. These methods show

promising experimental results, but excess computational

burden restricts them from practical usage.

Many authors have tried to overcome the drawbacks of

one fusion approach by taking benefit of other approach

through integrating two fusion methods. Ehlers et al.

(2010) presented pansharpening algorithm which is based

on IHS and fast Fourier transform (FFT). IHS transform is

used to transform MS bands into IHS space followed by

FFT applied to intensity component and PAN image. Then,

inverse FFT followed by inverse IHS is performed to get

the fused image. Even though this method works for fusing

multi-sensor and multi-temporal images, the power spec-

trum is used to design the high-pass filter for PAN image

and low-pass filter for intensity component of MS image.

The cut-off frequency for these filters has to be established

explicitly which makes the process complex. Chibani and

Houacine (2002) proposed hybrid satellite fusion method

based on IHS and redundant wavelet algorithm (WIHS).

Though WIHS preserves spectral information due to use of

redundant wavelet algorithm but fails in capturing spatial

information which is less than what IHS alone obtains.

Zhang and Hong (2005) proposed fusion technique based

on integration of IHS and non-redundant wavelet algorithm

which shows promising results but still the fused image is

spectrally distorted and information is lost due to use of

decimated wavelet algorithm. González-Audı́cana et al.

(2004) proposed a hybrid pansharpening fusion algorithm

by using improved IHS and PCA for extracting spatial

details from PAN image and later injected into individual

MS bands which are decomposed using Mallat’s subsam-

pled and nonsubsampled wavelet algorithms (Mallat,

1989). Here, nonsubsampled wavelet algorithm showed

better results with IHS and PCA than subsampled algo-

rithm. Johnson et al. (2013) proposed hybrid fusion algo-

rithm by integrating IHS and smoothing filter intensity

modulation (SFIM) as a pre-processing for image classifi-

cation. The window size of smoothing filter which is used

for averaging neighboring pixels of PAN image depends on

spatial ratio of MS and PAN images. As spatial ratio

decreases, the quality of fused image decreases (Ling et al.,

2008). Zhong et al. (2017) proposed generalized band-de-

pendant spatial-detail (GBDSD) algorithm which is com-

bination of CS and MRA-based methods. Though

computationally less expensive, the fused image obtained

from GBDSD is spectrally high but fails at inheriting

spatial quality. Recently, Faragallah (2018) presented

pansharpening algorithm which combined adaptive PCA
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(APCA) and high-pass modulation (HPM) for fusion of MS

and PAN images. To resolve the window size and standard

deviation of Gaussian low pass filter (GLPF) which is used

for smoothing PAN image, the proposed pansharpening

algorithm is adjusted with multi-objective optimization

(MOO). The method depends on window size of filter

which is determined by spatial ratio of the MS and PAN

images. For single-sensor, the method works well but for

multi-sensor satellite image fusion, it may not work as

spatial ratio varies from sensor to sensor. If spatial ratio is

small enough, the spectral quality of the fused image may

increase by compromising spatial information (Ling et al.,

2008). Zhang et al. (2019) proposed image fusion-based

method using spatial weighted neighbor embedding

(SWNE). The fused image generated is spatially high but

fails to preserve spectral characteristics from MS image.

Recently, many image fusion and pan-sharpening algo-

rithms have been proposed due to advancement in sensor

technology and demand of image representation and anal-

ysis (Liu et al., 2018; Ma et al., 2020; Masi et al., 2016; Xu

et al., 2020; Yang et al., 2017). All the convolutional neural

network (CNN)-based pan-sharpening methods (Liu et al.,

2018; Ma et al., 2020; Masi et al., 2016; Xu et al., 2020)

show good result but at the cost of high computational

complexity. Further, CNN-based image fusion methods

require huge amount of data along with ground truth for

training purpose (Ma et al., 2019).

All of the above methods have some advantages and

limitations over each other, but still there is a lot of room

for improving spectral as well as spatial characteristics of

the fused image.

Standard PCA

Standard PCA is also known as Karhunen–Loève (KL) and

Hotelling transform which is mathematical transformation

to produce new images called as components or axes. PCA

alters input MS bands into new rotated axes which are

orthogonal in nature to other axes. Mathematically, there is

no correlation among newly generated components. Ini-

tially, transformation employs eigenvalues and vectors

from correlation matrix of MS image to obtain principal

components. The newly generated principal components

carry and reconstruct most of the information from input

images. Block schematic of PCA for merging MS and PAN

image is shown in Fig. 1.

The covariance matrix represents variances and covari-

ance present in all the MS bands. Out of total variances of

the input image, maximum fraction of variance is mapped

in PC1 and can be calculated by Eq. 1, where r2
X is vari-

ance, lX is the mean representing gray values of image

band X and can be computed using Eq. 2. Pixel is denoted

by Xj for k number of pixels.

r2
X ¼

Pk
j¼1ðXj � lXÞ2

k � 1
ð1Þ

lX ¼
Pk

j¼1 Xj

k
: ð2Þ

The correlation represents the trade-off between gray

values of the pixel throughout various bands with respect to

the means of their corresponding bands. The correlation

CRðX;YÞ between gray values of different bands can be

calculated using Eq. 3. Here, X and Y denote gray values of

two different bands at pixel j out of k number of pixels, lX
and lY are means for X and Y bands of images, respec-

tively (Aiazzi et al., 2012; Pohl & Van Genderen, 2016).

Fig. 1 Block schematic for

satellite image fusion using

PCA
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CRðX;YÞ ¼
Pk

j¼1ðXj � lXÞðYj � lYÞ
k � 1

: ð3Þ

In PCA transformation, data are translated and rotated to

adapt the new axes representing the principal components,

calculated by Eq. 4 using linear transformation. Here, Evec

and ET
vec denote eigenvectors and transpose of eigenvec-

tors, respectively. CoR represents correlation matrix

through which Evec and ET
vec are computed.

V ¼ EvecCoRE
T
vec ð4Þ

The coefficients present in column of eigenvector matrix

Evec which need to transform the original image values into

principal component values using Eq. 5, where P denotes

the number of principal components, pc represents the

principal component value calculated with respect to band

i, and l representing total number of input bands with pixel

value px (Pohl & Van Genderen, 2016; Vivone et al.,

2015).

Ppc ¼
Xl

i¼1

pxiE
ði;pxÞ
vec ð5Þ

Fig. 2 Two-level decomposition

using 2D SSRWT

Fig. 3 Fourier spectrum a 2-D DWT for two-level decomposition, b 2-D SSRWT for two-level decomposition
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Applying the inverse PCA transform, the combined data

can be transformed back to the original co-ordinate system.

In general, spatial information is present in the first prin-

cipal component, PC1, which is present in all bands while

spectral information which is specific to individual bands

and is present in remaining principal components

(PC2; . . .; PCn). PC1 is replaced by PAN� which is his-

togram matched with original PAN image. Then, inverse

PCA is performed to obtain resultant fused image. This

fused image is spatially high but spectrally degraded.

Subsampled Rotated Wavelet Transform
(SSRWT)

SSRWT is modified interpretation of 2D DWT. Standard

2D DWT gives edge information in three directions (0�,
90� and �45�). Out of these orientations, combined diag-

onal edge information can be separated and presented in

two orientations as þ45� and �45� using SSRWT. In 2D

Fig. 4 Original MS image (data set 1) with a No shifting effect, b Original MS image, c No vertical shift distortion, d No horizontal shift

distortion

Fig. 5 Fused image (data set 1) of SSRWT with a shifting effect, b fused image obtained using SSRWT, c vertical shift distortion, d horizontal

shift distortion

cFig. 6 Block schematic a PCA–SSRWT fusion algorithm, b PCA–

NSRWT fusion algorithm
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DWT, decomposition is performed using 1D DWT filter

coefficients, while SSRWT uses nonseparable 2D rotated

wavelet filters. These 2D rotated wavelet filters are

designed using product of 1D scaling and wavelet functions

given by Eqs. 6–9.

HAA ¼ /AAðx; yÞ ¼ /ðxÞ/ðyÞ ð6Þ

HAD ¼ wADðx; yÞ ¼ /ðxÞwðyÞ ð7Þ

HDA ¼ wDAðx; yÞ ¼ wðxÞ/ðyÞ ð8Þ

HDD ¼ wDD x; yð Þ ¼ w xð Þw yð Þ: ð9Þ

1D scaling and wavelet functions are used to generate

2D filters HAA, HAD, HDA and HDD. These 2D filter masks

are then rotated by þ45� or �45� to design new filter

masks HAA
RðhÞ, H

AD
RðhÞ, H

DA
RðhÞ and HDD

RðhÞ which are referred as

rotated wavelet filters (RWF) (Kim & Udpa, 2000). Here,

subscript R is the fact that filters are rotated by h ¼ þ45� or

�45� while superscript AA (approximation), AD (horizon-

tal), DA (vertical) and DD (diagonal) are four subband

images. Two levels of decomposition for image Fðx; yÞ
with size m� n using 2D SSRWT are shown in Fig. 2.

After first level of decomposition, four subband images

IAA, IAD, IDA and IDD are generated of size m
2
� n

2
using 2D

RWF.

To obtain finer resolution in low frequency band, sub-

band image IAA can be further decomposed to generate

subband images bI
AA

, bI
AD

, bI
DA

and bI
DD

of size m
4
� n

4
as

shown in Fig. 2. Applying 2D RWF on image Fðx; yÞ, we

can extract information in þ45� and �45� distinctly. The

Fourier spectrum for 2D DWT provides information in

Fig. 7 Fused image (data set 1) of PCA–SSRWT with a shifting effect, b fused image obtained using PCA–SSRWT, c vertical shift distortion,

d horizontal shift distortion

Fig. 8 Two-level decomposition

using 2D NSRWT
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three direction is shown in Fig. 3a where as SSRWT pro-

vides information in 0�, 90�, þ45� and �45� as shown in

Fig. 3b.

SSRWT decomposition is applied to generate four

subband images for each, MS and PAN images. Using

fusion rule, corresponding four subband images are

merged. It is followed by inverse SSRWT to get the final

fused image. Figure 4 shows original MS image (Fig. 4b)

with no visual artifacts (Fig. 4a, c, d). The fused image

obtained by SSRWT (Fig. 5b) shows three major visual

artifacts namely color distortion, shifting effect (Fig. 5a)

and shift distortion along vertical columns and horizontal

rows as shown in Fig. 5c, d, respectively.

Color distortion observed in fused image of SSRWT is

caused as standard deviation of green (g) band of input MS

image is higher than red (r) and blue (b) bands, and the

resultant fused image tends to be greenish.

Proposed Fusion Algorithms

Standard PCA Integrated with Subsampled
Rotated Wavelet Transform (PCA–SSRWT)

To overcome color distortion, a hybrid satellite image

fusion algorithms are used which integrate PCA with

SSRWT (PCA–SSRWT). Figure 6a illustrates the block

Fig. 9 Fused image (data set 1) of NSRWT with a no shifting effect, b fused image obtained using NSRWT, c no vertical shift distortion, d no

horizontal shift distortion

Fig. 10 Fused image (data set 1) of PCA–NSRWT with a no shifting effect, b fused image obtained using PCA–NSRWT, c no vertical shift

distortion, d no horizontal shift distortion
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schematic of PCA–SSRWT. The brown and magenta color

dotted lines represent PCA and SSRWT blocks, respec-

tively. PCA transformation is applied on MS bands to get

the principal components (PC1; . . .; PCn). The first princi-

pal component PC1 has maximum spatial characteristics

which are common in all individual bands of MS image.

Remaining principal components carry spectral informa-

tion specific to individual r, g, and b bands of MS image.

Then, PAN image and PC1 of MS band are histogram

matched to generate PAN�
PC1

.

SSRWT decomposition is applied on PC1 and PAN�
PC1

,

which in turn generates four subband images each as

shown in Fig. 6a. After applying SSRWT to extract fea-

tures on PAN�
PC1

, it generates four subband images

PANAA
ðR;PC1Þ, PANAD

R , PANDA
R and PANDD

R representing

approximation, horizontal, vertical and diagonal subbands,

respectively. Similarly, SSRWT decomposition of PC1

generates four subband images MSAA
ðR;PC1Þ, MSAD

R , MSDA
R

and MSDD
R denoting approximation, horizontal, vertical and

diagonal subband images, respectively.

Four composite subband images, FUSEAA
ðR;PC1Þ, FUSEAD

R ,

FUSEDA
R and FUSEDD

R corresponding to approximation,

horizontal, vertical and diagonal details are, respectively,

created using fusion rules. Inverse SSRWT is applied to

reconstruct spatially high image PC�
1. This component

along with remaining principal components (PC2; . . .; PCn)

are used together for inverse PCA transform to get resultant

fused image. The fused image (Fig. 7b) generated is spa-

tially high by taking advantage of PCA for spatial details in

which color distortion has been mitigated as shown in

Fig. 7 using PCA–SSRWT. The final fused image obtained

using PCA–SSRWT is spectrally low and carries visual

artifacts namely shifting effect (Fig. 7a) and shift distortion

(Fig. 7c, d) due to down sampling and upsampling process

of SSRWT. To overcome these visual artifacts and at the

same time to maintain spatial quality and improve spectral

quality of the fused image, NSRWT is preferred over

SSRWT.

Standard PCA Integrated with Nonsubsampled
Rotated Wavelet Transform (PCA–NSRWT)

The visual artifact, i.e., shifting effect which is caused

during down-sampling while shift distortion is caused

during up-sampling is observed in the fused image

obtained by SSRWT and PCA–SSRWT. To overcome

these two visual artifacts, NSRWT is used which is

Fig. 11 LANDSAT-8 OLI sensor data sets a MS image (data set 1), b PAN image (data set 1), c MS image (data set 2), d PAN image (data set

2), e MS image (data set 3), f PAN image (data set 3)
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undecimated version of SSRWT (Chavan et al., 2018). The

two-level decomposition of an image Fðx; yÞ with size m�
n using 2D NSRWT is illustrated in Fig. 8. Conceptual

working of NSRWT is same as that of SSRWT except the

Fig. 12 Enlarged part of fused images for data set 1 a SSRWT, b NSRWT, c PCA–NSCT, d PCA–NSST, e PCA–SSRWT, f PCA–NSRWT

Fig. 13 Enlarged part of fused images for data set 2 a SSRWT, b NSRWT, c PCA–NSCT, d PCA–NSST, e PCA–SSRWT, f PCA–NSRWT
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fact that we do not perform subsampling in the process.

Therefore, the size of subband images after decomposition

remains same as that of input images. As we are elimi-

nating the process of sub-sampling, visual artifacts which

were observed in SSRWT are not observed in fused image

obtained using NSRWT. The final fused image obtained is

shown in Fig. 9b, where no visual artifacts (Fig. 9a, c, d)

are observed, but spatially it is degraded with improved

spectral quality. Therefore, to improve the spatial quality of

the fused image, PCA is integrated with NSRWT (PCA–

NSRWT).

The working principle of PCA–NSRWT is similar to

that of PCA–SSRWT except the sub-sampling is elimi-

nated in PCA–NSRWT. Figure 6b shows the block sche-

matic of PCA–NSRWT. The brown dotted and magenta

dotted lines represent PCA and NSRWT blocks, respec-

tively. As shown in Fig. 6b, PCA is applied on the input

MS generating PC1 which is then histogram matched with

PAN image to generate new histogram matched

image,PAN�
PC1

. Now, NSRWT decomposition is applied on

PC1 and PAN�
PC1

to generate four subband images for each

PC1 (MSAA
ðR;PC1Þ, MSAD

R , MSDA
R and MSDD

R ) and PAN�
PC1

(PANAA
ðR;PC1Þ, PANAD

R , PANDA
R and PANDD

R ). Then using

fusion rule, four composite subband planes FUSEAA
ðR;PC1Þ,

FUSEAD
R , FUSEDA

R and FUSEDD
R are generated on which

inverse NSRWT is applied to get PC�
1.

This newly generated image PC�
1 which is spatially high

is combined with remaining principal components of MS,

which are spectrally high. Later, inverse PCA is applied to

generate final fused image. The final fused image obtained

from PCA–NSRWT is spectrally as well as spatially high

with no visual artifacts and no color distortion which was

observed in SSRWT and NSRWT. Figure 10b shows fused

image obtained using PCA–NSRWT with enhanced spec-

tral quality, and no visual artifacts (Fig. 10a, c, d).

Result and Discussion

Data Sets

Experimentation was carried out on MS and PAN images

recorded by LANDSAT-8 OLI sensor. LANDSAT-8 OLI

sensors have nine bands out of which band 2, 3 and 4 are

considered for multispectral images captured through 0.45–

0.51 ml, 0.53–0.59 ml, and 0.63–0.67 ml bandwidth

range representing r, g, and b bands, respectively. PAN

band is recorded through 0.50–0.68 ml bandwidth range.

MS and PAN images have 30 and 15 m resolution,

respectively. Both MS and PAN images are co-registered

Fig. 14 Enlarged part of fused images for data set 3 a SSRWT, b NSRWT, c PCA–NSCT, d PCA–NSST, e PCA–SSRWT, f PCA–NSRWT
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Fig. 15 Fused images for data set 1 a PCA, b DWT, c SWT, d NSCT, e NSST, f SSRWT, g NSRWT, h PCA–NSCT, i PCA–NSST, j PCA–

SSRWT, k PCA–NSRWT
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with each other. Figure 11 shows three pairs of MS and

PAN images with first row representing MS images

(Fig. 11a, c, e) and second row PAN images (Fig. 11b, d,

f). Performance evaluation of the fused image is carried out

using visual interpretation and quantitative analysis.

Visual Interpretation

For visual interpretation and quantitative analysis, pro-

posed satellite fusion algorithms, i.e., PCA–SSRWT and

PCA–NSRWT are compared with PCA, DWT, SWT,

NSCT, NSST, SSRWT, NSRWT, PCA–NSCT and PCA–

NSST. The fused images for proposed algorithms along

with various state-of-the-art pansharpening methods are

shown through Figs. 15a–k, 16a–k and 17a–k for three data

sets, respectively. Further, we have compared the proposed

method with the pan-sharpening algorithms incorporated in

commercial software such as ArcGIS and ERDAS imagine.

Figures 12a–f, 13a–f and 14a–f show enlarged part of

fused images obtained using SSRWT, NSRWT, PCA–

NSCT, PCA–NSST, PCA–SSRWT and PCA–NSRWT for

three data sets. Significant color distortion is visible in the

fused images obtained using SSRWT (Figs. 12a, 13a, 14a)

as standard deviation of g band is more than r and b bands.

The fused images as a result of SSRWT not only suffer

from color distortion but also introduce visual artifacts like

shifting effect and shift distortion caused due to process of

subsampling. The fused images obtained using NSRWT

(Figs. 12b, 13b, 14b) do not show color distortion, and

shifting effect and shift distortion are also not observed.

Figures 12e, 13e and 14e show the fused images obtained

using PCA–SSRWT. When Fig. 13a is compared with

Fig. 13e, the color of water bodies (bottom left corner or

bottom right corner) is much better in the latter image. In

Fig. 13a, water bodies appear to be completely black body,

whereas in Fig. 13e it appears to be blue which suggests

that color distortion is less in fused images obtained using

proposed PCA–SSRWT than SSRWT. Though spectral and

spatial quality of fused image is improved using PCA–

SSRWT, it suffers from shifting effect and shift distortion

as clearly seen in Figs. 12e, 13e and 14e on left vertical

columns and bottom horizontal rows. Enlarged part of the

fused images obtained using PCA–NSCT and PCA–NSST

is shown through Figs. 12c, d, 13c, d and 14c, d, respec-

tively. It is evident that the fused images do not suffer from

spectral distortion and resemble closely to original input

images. Though spectrally high but the fused images

obtained using PCA–NSCT, PCA–NSST suffer from

blurring effect (Fig. 12c, d), boundary of water bodies

(Fig. 13c, d) and farms (Fig. 14c, d) are not sharp enough

to be discriminated. However, visually the fused images

obtained using PCA–NSCT and PCA–NSST appear to be

similar.

The fused image as a result of PCA–NSRWT has sharp

edges around the water bodies (Fig. 13f) and does not show

color distortion. It is closely resembling to the input images

which shows that the fused image is of high spectral

quality. In Figs. 12f and 14f, one can clearly discriminate

objects, i.e., residential areas with road intersections in

Fig. 12f and cultivated/harvested farms in Fig. 14f. How-

ever, it is difficult to interpret visually using NSRWT

(Figs. 12f, 14f).

Among pansharpening algorithms used for comparison,

the fused images using PCA (Figs. 15a, 16a, 17a) are

spatially high which make them visually appealing and

attractive. However, they suffer with color distortion con-

siderably which suggest that they are spectrally distorted.

The fused images using DWT (Figs. 15b, 16b, 17b) and

SWT (Figs. 15c, 16c, 17c) show no color distortion but

blurring effect. The boundaries of farms in Figs. 16b, c and

17b, c are difficult to discriminate each farm. The edges of

water bodies (Fig. 16b, c) do not appear to be sharp enough

which shows that spatial quality of fused images as result

of DWT and SWT is poor. Figures 15d, 16d and 17d and

Figs. 15e, 16e and 17e show the fused images obtained

using NSCT and NSST, respectively. Figures 15d, 16d and

17d clearly show that the NSCT does not suffer from color

distortion and incorporates almost all spectral information

from MS and PAN images. It is difficult to distinguish

small details in the fused images which indicated that

NSCT fails to incorporate spatial details. However, NSCT

appears better than DWT and SWT and resembles closely

to source images. Figure 15e, 16e and 17e show the fused

image obtained using NSST with no color distortion and

improved spatial quality. However, it is clear from

Fig. 16d, e that NSCT captures edges of water bodies

where NSST fails. Figure 18 presents the fused images

obtained from the pan-sharpening algorithms incorporated

into ArcGIS and ERDAS imagine software. The first row

in Fig. 18a, considerable spectral distortion (color of water

bodies), is observed in fused image obtained by GS, IHS

and Brovey. The second row in Fig. 18b shows the fused

image generated using Hyper-spherical Color Sharpening

(HCS), high-pass filtering (HPF) and Ehlers algorithms

(incorporated in ERDAS Imagine). It is obvious that the

fused images are spatially low and suffer from blurring

effect.

The fused image as a result of PCA–NSRWT is not only

visually superior to that of individual PCA, SSRWT,

NSRWT, NSCT, NSST, PCA–NSCT, PCA–NSST and

PCA–SSRWT but also has enhanced spectral and spatial

bFig. 16 Fused images for data set 2 a PCA, b DWT, c SWT, d NSCT,

e NSST, f SSRWT, g NSRWT, h PCA–NSCT, i PCA–NSST, j PCA–

SSRWT, k PCA–NSRWT
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quality of the fused image without introducing any visual

artifacts. It has almost retained all color information cor-

responding to original input MS images.

Quantitative Analysis

The quantitative analysis for the proposed algorithms along

with various state-of-the-art methods is presented in

Tables 1, 2 and 3 for three pairs of MS and PAN images. In

both Tables, the best results are represented black bold font

and the second best results are marked with underline

values. Ideal values for all the performance metrics are

presented by reference value in second row of both the

tables. Table 1 reports the experimental results for con-

ventional fusion metrics which includes correlation coef-

ficient (CC), entropy (H), structural similarity index metric

(SSIM) and spatial frequency (SF) (Jagalingam & Hegde,

2015). To observe the error rate of fused image, mean

square error (MSE) (Jagalingam & Hegde, 2015) is used. In

addition, Table 2 presents the spectral angle mapper

(SAM), universal image quality index (UIQI) and quality

not requiring reference (QNR) are used as assessment

metrics for spectral quality of the fused images (Palsson

et al., 2016).

SSIM measures the structural similarity through local

patterns of pixel between fused and original images. It uses

standard deviation and means of fused and original images.

SSIM ranges from - 1 to ? 1, and values near to ? 1

indicate that fused and original images are similar. Another

way to observe the similarity between fused and input

images is to compute row and column frequency of fused

image. Higher the value of SF, more is the similarity

between input and fused images. Spectral distortion in

fused image is measured using MSE. SAM denotes spectral

angle between original and estimated spectral vectors

(Palsson et al., 2016). If value of SAM is equal to zero,

then spectral distortion is absent otherwise spectral dis-

tortion is present. Usually, SAM is measured either in

degrees or radians. UIQI is used widely for assessing

quality of the fused images (Palsson et al., 2016). It maps

distortion by combining three factors which includes loss

of correlation, luminance distortion and contrast distortion.

The best value of UIQI is ? 1. QNR is used as average

assessment metric which combined spectral distortion (Dk)

and spatial distortion (DMS) (Palsson et al., 2016). When

QNR is 1, values of Dk and DMS are zero, i.e., no spectral

and spatial distortion observed in the fused image. The

bFig. 17 Fused images for data set 3 a PCA, b DWT, c SWT, d NSCT,

e NSST, f SSRWT, g NSRWT, h PCA–NSCT, i PCA–NSST, j PCA–

SSRWT, k PCA–NSRWT

Fig. 18 Fused images: a pan-sharpening algorithms incorporated in ArcGIS (GS, IHS and Brovey) b pan-sharpening algorithms incorporated in

ERDAS Imagine (HCS, HPF and Ehlers)
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lowest value of QNR is zero with increase in Dk and DMS

values.

As reported in Table 1, PCA–NSRWT outperforms

traditional pansharpening methods based on entropy and

spatial frequency. The fused image obtained by PCA–

NSRWT has richer information than any other methods.

Fused image of PCA–NSRWT has incorporated most of

the information from input MS and PAN images. SSRWT

and PCA–SSRWT perform poorly as compared to the

proposed method as it suffers from shift distortion and

shifting effect. The fused image obtained by PCA–NSCT

(dataset 1 and 2) performs better than other methods and

are highly correlated with input MS and PAN images. For

dataset 3, PCA–NSRWT performs better than other meth-

ods followed closely by PCA–NSST with difference of

0.0089. PCA–NSST stands second for all dataset in com-

puting similarity based on spectral features. SSIM of PCA–

NSRWT gives better result for all datasets with difference

of 0.0062, 0.0041 and 0.0123 for dataset 1, 2 and 3,

respectively. These indicates that the fused image obtained

using PCA–NSRWT is similar and integrates most of the

features from source images. SSRWT and PCA–SSRWT

fail to incorporate information from source image as it

suffers from visual artifacts. The fused image obtained

using PCA–NSRWT has incorporated most of the infor-

mation from source images and is superior to the fused

images of other methods. Table 1 clearly indicates that for

dataset 1, 2 and 3, PCA–NSRWT exhibits minimum error

rate (MSE) than NSST which stands second in the race. For

dataset 1, 2 and 3, PCA–NSRWT outperforms NSST with

Table 1 Quantitative analysis of

the fused images based on

statistical metrics

Dataset Methods/parameters CC H SSIM SF MSE

Dataset 1 PCA 0.8336 6.25 0.9158 3.22 1770.98

DWT 0.8337 5.96 0.9061 2.32 1803.54

SWT 0.8333 5.96 0.9301 2.28 1804.11

NSCT 0.8411 5.96 0.9331 2.10 1803.33

NSST 0.8467 5.91 0.9059 2.87 69.5639

SSRWT 0.4858 6.12 0.6780 2.32 2642.44

NSRWT 0.8171 6.07 0.8962 4.02 1695.56

PCA–NSCT 0.8409 6.21 0.8879 4.11 71.1007

PCA–NSST 0.9674 6.31 0.9855 4.01 78.8710

PCA–SSRWT 0.4884 6.11 0.7336 3.27 298.317

PCA–NSRWT 0.9709 6.39 0.9917 5.72 67.8014

Dataset 2 PCA 0.6903 6.91 0.9270 2.54 1338.25

DWT 0.6362 6.83 0.9296 2.19 1286.97

SWT 0.6358 6.83 0.9453 2.20 1288.01

NSCT 0.6391 6.83 0.9455 2.02 1287.98

NSST 0.8901 6.82 0.9388 2.79 46.0483

SSRWT 0.3634 6.72 0.7811 2.29 1448.51

NSRWT 0.6233 6.89 0.9327 3.56 1212.22

PCA–NSCT 0.6917 6.90 0.9722 3.37 113.992

PCA–NSST 0.9860 6.89 0.9929 3.12 259.665

PCA–SSRWT 0.3878 6.46 0.6723 2.65 589.307

PCA–NSRWT 0.9890 6.97 0.9970 4.44 37.6471

Dataset 3 PCA 0.9629 6.21 0.9283 2.29 4314.81

DWT 0.9463 5.80 0.8786 1.45 4331.92

SWT 0.9462 5.80 0.9276 1.41 4332.89

NSCT 0.9498 5.80 0.9292 1.38 4331.74

NSST 0.9617 5.76 0.9144 2.20 65.9204

SSRWT 0.5843 5.97 0.6957 1.62 5846.87

NSRWT 0.9361 5.86 0.9218 2.44 4054.95

PCA–NSCT 0.9633 6.20 0.9560 3.22 93.0862

PCA–NSST 0.9574 6.15 0.9854 2.66 312.312

PCA–SSRWT 0.5083 6.04 0.8267 2.42 360.455

PCA–NSRWT 0.9722 6.28 0.9977 3.95 36.2700

Journal of the Indian Society of Remote Sensing

123



notable difference of 1.7625, 8.4012 and 29.6504,

respectively.

Table 2 gives quantitative analysis for measuring spec-

tral quality of the fused images namely SAM, UIQI, Dk, DS

and QNR. For all data sets, PCA–NSRWT shows splendid

performance as compared to other methods in preserving

spectral quality of the fused images. Though visual artifacts

persist in the fused image of PCA–SSRWT, spectral and

spatial quality has improved more than individual SSRWT

and PCA.

Table 3 gives information about the artifacts that are

introduced into fused image during process of fusion. To

verify false artifacts introduced during fusion process,

objective image fusion performance parameters along with

edge preservation metric for individual bands are used

(Jagalingam & Hegde, 2015; Xydeas & Pertrovic, 2000).

Objective image fusion performance measures estimate

total amount of information transferred from source image

to fused image ðQabf Þ and compute the fraction of infor-

mation lost ðLabf Þ and false artifacts ðNabf Þ introduced

during process of fusion. As indicated in Table 3, PCA–

NSRWT retains most of the information from input MS

and PAN images followed closely by NSRWT with mini-

mum difference of 0.0008 and 0.0011 for dataset 2 and 3,

respectively. For dataset 1, NSCT performs better than

PCA–NSRWT with minimum difference of 0.0131. Except

for dataset 3, PCA performs better than all other methods

with minimum amount of data loss during fusion process.

For dataset 3, PCA–NSRWT stands first with minimum

information lost (i.e., 0.0238). NSCT introduces minimum

Table 2 Quantitative analysis of

the fused images based on

similarity metrics

Dataset Methods/parameters SAM UIQI Dk DS QNR

Dataset 1 PCA 3.13 0.8356 0.1142 0.0980 0.7989

DWT 2.01 0.7463 0.0159 0.0704 0.9148

SWT 2.01 0.7891 0.0230 0.0496 0.9285

NSCT 1.45 0.8042 0.0343 0.1229 0.8470

NSST 2.10 0.5928 0.0990 0.1865 0.7329

SSRWT 3.14 0.7925 0.0070 0.1902 0.8041

NSRWT 1.45 0.9190 0.1567 0.0735 0.7804

PCA–NSCT 1.39 0.8640 0.0847 0.0983 0.8253

PCA–NSST 1.41 0.8194 0.0837 0.0927 0.8313

PCA–SSRWT 2.19 0.8241 0.1112 0.1904 0.7195

PCA–NSRWT 1.23 0.9459 0.0023 0.0193 0.9784

Dataset 2 PCA 2.19 0.8174 0.1446 0.1364 0.7387

DWT 1.95 0.7511 0.0288 0.0518 0.9208

SWT 1.84 0.8165 0.0540 0.0637 0.8857

NSCT 1.33 0.8213 0.0707 0.0953 0.8407

NSST 2.02 0.6828 0.1266 0.1032 0.7832

SSRWT 2.98 0.6265 0.0243 0.0387 0.9379

NSRWT 1.31 0.9328 0.0493 0.0267 0.9253

PCA–NSCT 1.34 0.8472 0.0190 0.1176 0.8656

PCA–NSST 1.52 0.7814 0.0362 0.0118 0.9524

PCA–SSRWT 1.91 0.8024 0.1381 0.0321 0.8342

PCA–NSRWT 1.20 0.9589 0.0190 0.0213 0.9583

Dataset 3 PCA 4.23 0.7402 0.1353 0.1320 0.7505

DWT 3.20 0.6158 0.0635 0.0502 0.8894

SWT 3.15 0.6756 0.0093 0.0491 0.9420

NSCT 1.56 0.6924 0.0303 0.1272 0.8463

NSST 1.99 0.5594 0.1266 0.1032 0.7832

SSRWT 2.11 0.5169 0.0231 0.2035 0.7781

NSRWT 1.33 0.9211 0.1639 0.0932 0.7581

PCA–NSCT 1.37 0.8472 0.1205 0.1036 0.7883

PCA–NSST 1.49 0.6761 0.0009 0.1202 0.8790

PCA–SSRWT 1.89 0.8332 0.1307 0.2041 0.6918

PCA–NSRWT 1.11 0.9341 0.0082 0.0123 0.9796
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amount of false artifacts during fusion. DWT and SWT

show poor performance in retaining information from

source images. SSRWT and PCA–SSRWT show very poor

performance for the fact that both algorithms introduce

visual artifacts (shifting effect and shift distortion) during

fusion process.

Edge information for individual r, g and b bands of

fused image is presented in Table 2. For data set 1 and 3,

PCA–NSRWT successfully preserves edge information for

all bands followed by NSRWT. For data set 2, PCA–

NSRWT shows better performance in preserving edge

information for band g, whereas NSRWT has better edge

information for bands r, b with 0.0074 and 0.0466 differ-

ence to that of PCA–NSRWT. For band g, PCA–NSRWT

shows better result with difference of 0.014. Even though

PCA–SSRWT suffers from visual artifacts, it stands third

in the list in preserving edge information. In general, PCA–

NSRWT shows better result in preserving edge information

compared to other methods. Table 4 presents the time

complexity in terms of execution time in seconds on

average basis for all the algorithms. Though PCA–NSRWT

has large average execution time than individual PCA and

NSRWT, PCA–NSRWT has better spectral and spatial

quality. The drawbacks (shifting effect and shift distortion)

Table 3 Quantitative analysis of the fused image based on objective image fusion performance and edge preservation metrics

Data sets Methods/Parameters Qabf Labf Nabf r band g band b band

Reference value close to ? 1 close to 0 close to 0 close to ? 1 close to ? 1 close to ? 1

Data set 1 PCA 0.8485 0.0349 0.1166 0.5223 0.5239 0.5267

DWT 0.2858 0.6335 0.0807 0.4335 0.4337 0.4389

SWT 0.3427 0.4895 0.1678 0.4940 0.4923 0.4929

NSCT 0.8877 0.1045 0.0078 0.4541 0.4587 0.4569

NSST 0.7152 0.2732 0.0116 0.4449 0.3883 0.4371

SSRWT 0.8735 0.1091 0.0174 0.4780 0.4696 0.4585

NSRWT 0.4169 0.1007 0.4823 0.6354 0.6370 0.6371

PCA–NSCT 0.8688 0.0593 0.0719 0.5480 0.5330 0.5439

PCA–NSST 0.8364 0.0812 0.0824 0.5718 0.5551 0.5696

PCA–SSRWT 0.6029 0.1351 0.2620 0.5075 0.5011 0.5052

PCA–NSRWT 0.8746 0.1090 0.0164 0.6530 0.6517 0.6526

Data set 2 PCA 0.9299 0.0305 0.0396 0.4688 0.5049 0.4710

DWT 0.2505 0.6900 0.0596 0.4577 0.4568 0.4539

SWT 0.2969 0.6129 0.0902 0.5050 0.4901 0.4998

NSCT 0.9299 0.0642 0.0059 0.4476 0.4408 0.4374

NSST 0.7428 0.2442 0.0131 0.4772 0.4883 0.4192

SSRWT 0.6045 0.1275 0.2680 0.4973 0.5100 0.4622

NSRWT 0.9309 0.0611 0.0081 0.6069 0.5926 0.6268

PCA–NSCT 0.8884 0.0807 0.0309 0.5279 0.5159 0.5199

PCA–NSST 0.7880 0.1790 0.0330 0.0.5247 0.5442 0.4702

PCA–SSRWT 0.6876 0.1452 0.1673 0.5131 0.4996 0.4913

PCA–NSRWT 0.9317 0.0608 0.0075 0.5995 0.5940 0.5802

Data set 3 PCA 0.9458 0.0471 0.0070 0.5086 0.5449 0.5025

DWT 0.6805 0.1465 0.1730 0.5026 0.5056 0.4928

SWT 0.6159 0.1300 0.2541 0.5479 0.5359 0.5390

NSCT 0.9400 0.0546 0.0054 0.4911 0.4840 0.4645

NSST 0.8260 0.1642 0.0098 0.5937 0.5903 0.4784

SSRWT 0.2498 0.6916 0.0586 0.5335 0.5454 0.4875

NSRWT 0.9467 0.0469 0.0064 0.6136 0.6093 0.5964

PCA–NSCT 0.8996 0.0779 0.0226 0.5708 0.5564 0.5173

PCA–NSST 0.8356 0.1382 0.0262 0.5997 0.5925 0.5279

PCA–SSRWT 0.3009 0.6139 0.0852 0.5269 0.5250 0.5148

PCA–NSRWT 0.9478 0.0238 0.0284 0.6310 0.6236 0.6429
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of SSRWT and PCA–SSRWT are overcome by NSRWT

and PCA–NSRWT. Even though the proposed algorithm

gives good result, there is still chance of improvement in

spectral and spatial quality of the fused image. In future,

we will be testing the proposed algorithm with images

captured by various sensors, e.g., QuickBird, IKONOS,

and GeoEye. Further, we also need to test the proposed

algorithm by combining data from various sensors, e.g.,

MS image captured from Landsat-8 and PAN image from

QuickBird.

On the basis of visual and quantitative analysis, it is

evident that PCA–NSRWT has enhanced fused image

spectrally as well as spatially. PCA–SSRWT has enhanced

fused image spectrally, but it is a poor performer than

PCA–NSRWT due to visual artifacts. The quantitative

result advocates the visual interpretation, and it is apparent

to say that among the two proposed hybrid satellite fusion

algorithms, PCA–NSRWT performs better then PCA–

SSRWT.

Conclusion

This paper presents two pansharpening algorithms based on

standard PCA combined with rotated wavelet transform

namely PCA–SSRWT and PCA–NSRWT. Visual artifacts

like color distortion, shifting effect and shift distortion

introduced by SSRWT and PCA–SSRWT algorithms

degrade spectral and spatial quality of the fused image. The

fused image obtained using NSRWT dose not show shift-

ing effect and shift distortion, but spatial quality is degra-

ded with improved spectral quality. To improve spatial

quality by maintaining spectral quality, NSRWT is inte-

grated with PCA (PCA–NSRWT). PCA–NSRWT not only

eliminates visual artifacts but also improves spectral

quality by taking advantage of NSRWT, while spatial

quality of the fused image is enhanced by taking benefit of

PCA where principal component (PC1) incorporates spatial

information which is common to all the bands (r, g and

b) of MS image which is histogram matched with PAN

image. The fused image generated using PCA–NSRWT is

superior to that of other fusion algorithms where detail

features are easily distinguishable visually. The fused

image as a result of PCA–NSRWT is evaluated using

various performance metrics where it outperforms not only

PCA and NSRWT but also other methods. Fused image of

PCA–NSRWT incorporates spectral and spatial details

from source images. PCA–NSRWT shows its capability in

transferring features from input images into fused image

without addition of false artifacts during fusion process.

PCA–NSRWT is also able to preserve almost all edge

information from MS and PAN images into fused image.

The quantitative investigation actively exhibits robustness

of the PCA–NSRWT through various performance metrics,

and the overall performance of proposed algorithms for

fusing satellite images shows astounding results over other

fusion algorithms. The visual and quantitative analysis

shows that standard PCA works better with NSRWT than

SSRWT.
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