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Abstract

Many pansharpening algorithms are based on the principle of extracting spatial details from panchromatic (PAN) images
and injecting them into multispectral (MS) images. In this paper, we present two fusion approach based on same principle
by integrating standard principle component analysis (PCA) with decimated and undecimated rotated wavelet transform.
When decimated/subsampled rotated wavelet transform (SSRWT) is used for fusion of MS and PAN images, three visual
artifacts get introduced in the fused image namely color distortion, shifting effect and shift distortion. To eliminate color
distortion, SSRWT is integrated with standard PCA, i.e., PCA-SSRWT. Color distortion is significantly mitigated, but
shifting effect and shift distortion persist in the fused image of PCA-SSRWT. After employing undecimated/nonsub-
sampled rotated wavelet transform (NSRWT), shifting effect and shift distortion get eliminated with minimum color
distortion. However, fused image as a result of NSRWT is spectrally high but spatially low. In order to improve spatial
quality and remove visual artifacts observed in SSRWT and PCA-SSRWT, NSRWT is integrated with standard PCA, i.e.,
PCA-NSRWT. Visual and quantitative analysis is carried out to validate the quality of fused image for all the algorithms.
Visual interpretation suggests that fused image obtained using PCA-NSRWT is superior to fused images of SSRWT, PCA
and NSRWT. The overall quantitative analysis manifests that the PCA-NSRWT is consistent with visual interpretation and
performs better than state-of-the-art methods. PCA-NSRWT not only removes visual artifacts but also improves spectral
and spatial quality of the fused image compared to individual PCA, SSRWT, NSRWT and PCA-SSRWT. Based on visual
and quantitative analysis, it is observed that PCA works better with undecimated compared to decimated rotated wavelet
transform for fusion.

Keywords Nonsubsampled rotated wavelet transform (NSRWT) - Principal component analysis (PCA) - Satellite image
fusion - Shift distortion - Shifting effect - Subsampled rotated wavelet transform (SSRWT)

Introduction

Remote sensing plays a significant role in examining sur-
face of earth through images captured by sensors on board
of satellite. Sensors have specific objectives as different
D< Rishikesh G. Tambe sensors are characterized to record various features about

rishitambe @gmail.com earth’s surface (Pohl & Van Genderen, 2016). Based on
objective of sensors, they have different spectral, spatial
resolution and information content is reciprocal to each
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spectrally as well as spatially high at once due to limitation
of sensor technology.

High spectral and spatial information is desirable for
many applications. Applications such as land-use or land-
cover in which spectral information is of more importance,
while high spatial information is more suited for applica-
tions such as object recognition and to identify various
features and structures in urban study. A single image
either with high spectral or spatial information cannot meet
the needs of various applications. Therefore, it is obligatory
to combine the spectral and spatial information for such
applications.

To combine the high spectral and spatial information,
image fusion is a promising pre-processing tool for many
applications. According to Pohl and Van Genderen (1998),
image fusion is a process of combining complementary
information from two or more images into a single fused
image. However, the definition does not deal with the
quality of the fused image (Wald, 1999). Mangolini (1994)
focused not only on combining two or more images but
also on the quality of the fused image. Hence, it is
imperative to not only combine but also improve the
spectral and spatial quality of fused image. In general, MS
imaging sensors record information which is spectrally
high and spatially low whereas PAN imaging sensors
record information which is spectrally low but spatially
high. High spectral content of MS image can be combined
with high spatial content of PAN image to get the fused
image which is superior in quality to individual MS and
PAN images (Mangolini, 1994). When this fusion is per-
formed using MS and PAN images, it is popularly known
as pansharpening.

Pansharpening can be considered as special case of
image fusion. Many pansharpening methods have been
proposed by several researchers and still coping with
improving spectral and spatial quality of the fused image.
Most of the state-of-the-art fusion methods give good result
but still lack in preserving spectral quality due to variations
in gray values between MS and PAN images. Recently,
fusion algorithm based on Bayesian-based methods, sparse
representation/reconstruction has been proposed (Vici-
nanza et al., 2015). Even though these fusion algorithms
show promising results, they are unable to find their ways
in becoming practically operational due to their complex
architecture and are computationally expensive. Traditional
pansharpening algorithms are well reviewed and tested, so
many researchers are still focusing on the state-of-the-art
pansharpening methods for enhancing spectral and spatial
quality of the fused image. So to achieve better quality of
the fused image, many researchers proposed several hybrid
pansharpening algorithms.

In this paper, two hybrid satellite image fusion methods
are proposed namely PCA-SSRWT and PCA-NSRWT.
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The proposed fusion algorithms take benefit of shift
invariance and directionality property of SSRWT and
NSRWT along with PCA to inject high spatial character-
istics of PAN image into spatially low MS image using
dimensionality reduction property. Fused image obtained
using SSRWT suffers from three visual artifacts namely
color distortion, shifting effect and shift distortion. To
overcome these visual artifacts and to improve the quality
of the fused image, combination of component substitution
(CS)-based method, PCA with multiresolution analysis
(MRA)-based method, SSRWT and NSRWT are used. The
proposed algorithms preserve spectral information of MS
using SSRWT and NSRWT along with PCA taking care of
spatial information of PAN image. Therefore, the resulting
fused image contains high spectral and spatial information.
The major contributions of this paper are summarized as:

1. Color distortion observed in the fused image of
SSRWT is alleviated by a new hybrid pansharpening
algorithm, PCA-SSRWT.

2. Visual artifacts namely shifting effect and shift distor-

tion are noticed in SSRWT, and PCA-SSRWT are
addressed by second hybrid pansharpening algorithm,
PCA-NSRWT. It not only eliminates these artifacts
but also improves spectral and spatial quality of the
resultant fused image.

The remainder of this paper is organized as follows.
“Related Work” section deals with literature survey of
fusion algorithms for satellite images. In “Standard PCA”
and “Subsampled Rotated Wavelet Transform (SSRWT)”
sections, standard PCA and rotated wavelet transform are
reviewed, respectively. In “Proposed Fusion Algorithms”
section, the proposed hybrid algorithms for satellite image
fusion are presented. “Result and Discussion” section
comments on experimental results and analysis of different
algorithms using fusion metrics. Concluding remarks are
reported in “Conclusion” section.

Related Work

Several researchers have proposed pansharpening algo-
rithms using different mathematical tools for various
applications such as urban classification, change detection.
(Pohl & Van Genderen, 2016). A comparative study of
pansharpening algorithms has been reviewed by Pohl and
Van Genderen (2016), Vivone et al. (2015), Aiazzi et al.
(2012). Many researchers have tried to classify pansharp-
ening algorithms into various classes (Zhang & Huang,
2015). The two major approaches which are widely used in
satellite image fusion are CS and MRA. The first approach
depends on substitution of a component of MS image by
high spatial PAN image. Many researchers have proposed
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fusion algorithms based on image transformation which
include intensity-hue-saturation (IHS) (Carper et al., 1990),
Gram—Schmidt transform (GST) (Laben & Brower, 2000),
adaptive GS (Garzelli et al., 2008), PCA (Shah et al,,
2008), etc. Algorithms belonging to this class are
straightforward, less complicated and easy to implement.
However, the fused images as a result of CS-based methods
are visually attractive but are spectrally distorted.

In the second approach, input images are decomposed at
different scales followed by feature extraction from PAN
image and MS image. Fused images obtained using MRA-
based methods provide spectral as well as spatial infor-
mation simultaneously. For instance, wavelet-based fusion
algorithms (Aiazzi et al., 2002; Amolins et al., 2007;
Nunez et al., 1999) and pyramid-based fusion methods
(Burt & Adelson, 1983) belong to class of MRA fusion
algorithms and both of them have their own advantages and
disadvantages. Fused image obtained by pyramid fusion
algorithm includes extraneous edge information and orig-
inates blocking artifacts as number of decomposition levels
increases. Treating these as a major concern, researchers
are exploring wavelet-based fusion techniques for the last
two decades. Fusion algorithm based on wavelet includes
discrete wavelet transform (DWT) which preserves spectral
as well as spatial information but is shift variant and has
poor directionality (Li et al., 1995; Mallat, 1989). To
overcome the limitations of DWT, stationary wavelet
transform (SWT) was proposed in Nason and Silverman
(1995), where decomposition was performed without sub-
sampling. SWT is computationally expensive than DWT as
it is influenced by number of decomposition levels (Prad-
han et al., 2006). Kingsbury (1999) proposed dual-tree
complex wavelet transform (DT-CWT) which is shift
invariant, computationally efficient and has better direc-
tionality property. The contourlet transform (CT) (Do &
Vetterli, 2005) is a multiscale and multidirectional trans-
form where point discontinuities are captured by Laplacian
pyramid (LP) (Burt & Adelson, 1983) followed by use of
directional filter bank (DFB) (Bamberger & Smith, 1992)
to link point discontinuities into linear structure. However,
subsampling process in both LP and DFB makes the CT
shift variant which results in ringing artifacts. To overcome
problem of CT, Da Cunha et al. (2006) proposed NSCT
which is shift invariant, multiscale and multidirectional
framework. Pansharpening performed using NSCT shows
good results by preserving spectral features by compro-
mising spatial quality of the fused image. Computational
complexity of NSCT is high as compared to other wavelet-
based fusion methods. To eliminate the computational
burden and increase the number of directional information,
the shearlet transform (ST) was proposed Labate et al.
(2005). ST working can be divided into two phases:
pyramid filter banks (PFB) and shearing filter banks (SFB).

ST lacks shift-invariance due to subsampling operation in
both PFB and SFB. Easley et al. (2008) proposed non-
subsampling shearlet transform (NSST) which omits sam-
pling operation. NSST has shown good fusion result with
low computational burden. However, designing good filter
for the NSST is a challenging task. These methods show
promising experimental results, but excess computational
burden restricts them from practical usage.

Many authors have tried to overcome the drawbacks of
one fusion approach by taking benefit of other approach
through integrating two fusion methods. Ehlers et al.
(2010) presented pansharpening algorithm which is based
on IHS and fast Fourier transform (FFT). IHS transform is
used to transform MS bands into IHS space followed by
FFT applied to intensity component and PAN image. Then,
inverse FFT followed by inverse THS is performed to get
the fused image. Even though this method works for fusing
multi-sensor and multi-temporal images, the power spec-
trum is used to design the high-pass filter for PAN image
and low-pass filter for intensity component of MS image.
The cut-off frequency for these filters has to be established
explicitly which makes the process complex. Chibani and
Houacine (2002) proposed hybrid satellite fusion method
based on IHS and redundant wavelet algorithm (WIHS).
Though WIHS preserves spectral information due to use of
redundant wavelet algorithm but fails in capturing spatial
information which is less than what IHS alone obtains.
Zhang and Hong (2005) proposed fusion technique based
on integration of IHS and non-redundant wavelet algorithm
which shows promising results but still the fused image is
spectrally distorted and information is lost due to use of
decimated wavelet algorithm. Gonzalez-Audicana et al.
(2004) proposed a hybrid pansharpening fusion algorithm
by using improved IHS and PCA for extracting spatial
details from PAN image and later injected into individual
MS bands which are decomposed using Mallat’s subsam-
pled and nonsubsampled wavelet algorithms (Mallat,
1989). Here, nonsubsampled wavelet algorithm showed
better results with THS and PCA than subsampled algo-
rithm. Johnson et al. (2013) proposed hybrid fusion algo-
rithm by integrating IHS and smoothing filter intensity
modulation (SFIM) as a pre-processing for image classifi-
cation. The window size of smoothing filter which is used
for averaging neighboring pixels of PAN image depends on
spatial ratio of MS and PAN images. As spatial ratio
decreases, the quality of fused image decreases (Ling et al.,
2008). Zhong et al. (2017) proposed generalized band-de-
pendant spatial-detail (GBDSD) algorithm which is com-
bination of CS and MRA-based methods. Though
computationally less expensive, the fused image obtained
from GBDSD is spectrally high but fails at inheriting
spatial quality. Recently, Faragallah (2018) presented
pansharpening algorithm which combined adaptive PCA
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Fig. 1 Block schematic for
satellite image fusion using
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(APCA) and high-pass modulation (HPM) for fusion of MS
and PAN images. To resolve the window size and standard
deviation of Gaussian low pass filter (GLPF) which is used
for smoothing PAN image, the proposed pansharpening
algorithm is adjusted with multi-objective optimization
(MOO). The method depends on window size of filter
which is determined by spatial ratio of the MS and PAN
images. For single-sensor, the method works well but for
multi-sensor satellite image fusion, it may not work as
spatial ratio varies from sensor to sensor. If spatial ratio is
small enough, the spectral quality of the fused image may
increase by compromising spatial information (Ling et al.,
2008). Zhang et al. (2019) proposed image fusion-based
method using spatial weighted neighbor embedding
(SWNE). The fused image generated is spatially high but
fails to preserve spectral characteristics from MS image.
Recently, many image fusion and pan-sharpening algo-
rithms have been proposed due to advancement in sensor
technology and demand of image representation and anal-
ysis (Liu et al., 2018; Ma et al., 2020; Masi et al., 2016; Xu
et al., 2020; Yang et al., 2017). All the convolutional neural
network (CNN)-based pan-sharpening methods (Liu et al.,
2018; Ma et al., 2020; Masi et al., 2016; Xu et al., 2020)
show good result but at the cost of high computational
complexity. Further, CNN-based image fusion methods
require huge amount of data along with ground truth for
training purpose (Ma et al., 2019).

All of the above methods have some advantages and
limitations over each other, but still there is a lot of room
for improving spectral as well as spatial characteristics of
the fused image.

@ Springer

Standard PCA

Standard PCA is also known as Karhunen—Loéve (KL) and
Hotelling transform which is mathematical transformation
to produce new images called as components or axes. PCA
alters input MS bands into new rotated axes which are
orthogonal in nature to other axes. Mathematically, there is
no correlation among newly generated components. Ini-
tially, transformation employs eigenvalues and vectors
from correlation matrix of MS image to obtain principal
components. The newly generated principal components
carry and reconstruct most of the information from input
images. Block schematic of PCA for merging MS and PAN
image is shown in Fig. 1.

The covariance matrix represents variances and covari-
ance present in all the MS bands. Out of total variances of
the input image, maximum fraction of variance is mapped
in PC; and can be calculated by Eq. 1, where ¢% is vari-
ance, Uy is the mean representing gray values of image
band X and can be computed using Eq. 2. Pixel is denoted
by X; for kK number of pixels.

Z]]'(:l (X; — ,“x)2
k—1

S* X
My = % (2)

(1)

2 _
Oy =

The correlation represents the trade-off between gray
values of the pixel throughout various bands with respect to
the means of their corresponding bands. The correlation
CR(x,y) between gray values of different bands can be
calculated using Eq. 3. Here, X and Y denote gray values of
two different bands at pixel j out of kK number of pixels,
and py are means for X and Y bands of images, respec-
tively (Aiazzi et al., 2012; Pohl & Van Genderen, 2016).
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Fig. 2 Two-level decomposition
using 2D SSRWT
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Fig. 3 Fourier spectrum a 2-D DWT for two-level decomposition, b 2-D SSRWT for two-level decomposition
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In PCA transformation, data are translated and rotated to
adapt the new axes representing the principal components,
calculated by Eq. 4 using linear transformation. Here, E\e.
and E! . denote eigenvectors and transpose of eigenvec-
tors, respectively. C,R represents correlation matrix

through which E.. and ET  are computed.

vec
V= EvecCoRET

vec

(4)

The coefficients present in column of eigenvector matrix
E\.. which need to transform the original image values into
principal component values using Eq. 5, where P denotes
the number of principal components, pc represents the
principal component value calculated with respect to band
i, and [ representing total number of input bands with pixel
value px (Pohl & Van Genderen, 2016; Vivone et al.,
2015).

l
Pre= Y prry? 5)
i=1
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No Vertical Shift Distortion

(©

No Shifting Effe

(a)

No Horizontal Shift Distortion
Original MS Image (d)

(b)

Fig. 4 Original MS image (data set 1) with a No shifting effect, b Original MS image, ¢ No vertical shift distortion, d No horizontal shift
distortion

Vertical Shift Distortion
©

Horizontal Shift Distortion
Fused Image Obtained using SSRWT (d)

(b)

Fig. 5 Fused image (data set 1) of SSRWT with a shifting effect, b fused image obtained using SSRWT, ¢ vertical shift distortion, d horizontal
shift distortion

Applying the inverse PCA transform, the combined data Fig. 6 Block schematic a PCA-SSRWT fusion algorithm, b PCA—p
can be transformed back to the original co-ordinate system. =~ NSRWT fusion algorithm

In general, spatial information is present in the first prin-
cipal component, PC;, which is present in all bands while
spectral information which is specific to individual bands Subsampled Rotated Wavelet Tran sform
and is present in remaining principal components (SSRWT)

(PC,,...,PC,). PC; is replaced by PAN* which is his-
togram matched with original PAN image. Then, inverse
PCA is performed to obtain resultant fused image. This
fused image is spatially high but spectrally degraded.

SSRWT is modified interpretation of 2D DWT. Standard
2D DWT gives edge information in three directions (0°,
90° and +45°). Out of these orientations, combined diag-
onal edge information can be separated and presented in
two orientations as +45° and —45° using SSRWT. In 2D
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DWT, decomposition is performed using 1D DWT filter
coefficients, while SSRWT uses nonseparable 2D rotated
wavelet filters. These 2D rotated wavelet filters are
designed using product of 1D scaling and wavelet functions
given by Egs. 6-9.

HY = ¢™M(x,y) = p(x)p(y) (6)
HYP =y (x,y) = p(x)(y) (7)
HP* = P (x,y) = ¥ (x)p(y) (8)

HPP = yPP (x,y) = y(x)y(y). 9)

1D scaling and wavelet functions are used to generate
2D filters HA, HAP, HPA and HPP. These 2D filter masks
are then rotated by +45° or —45° to design new filter
masks H;\a?a)’ H;\e?e)’ HRL?&) and Hg(lz,) which are referred as

Shifting Effect

(a)

rotated wavelet filters (RWF) (Kim & Udpa, 2000). Here,
subscript R is the fact that filters are rotated by 0 = +45° or
—45° while superscript AA (approximation), AD (horizon-
tal), DA (vertical) and DD (diagonal) are four subband
images. Two levels of decomposition for image F(x,y)
with size m X n using 2D SSRWT are shown in Fig. 2.
After first level of decomposition, four subband images
144, 14P P4 and IPP are generated of size % x % using 2D
RWEF.

To obtain finer resolution in low frequency band, sub-

band image I*4 can be further decomposed to generate

. A AD DA ~DD .
subband images I , I , I and I  of size §f x ] as

shown in Fig. 2. Applying 2D RWF on image F(x,y), we
can extract information in +45° and —45° distinctly. The
Fourier spectrum for 2D DWT provides information in

Vertical Shift Distortion

(c)

Horizontal Shift Distortion

Fused Image Obtained using PCA-SSRWT ( d)

(b)

Fig. 7 Fused image (data set 1) of PCA-SSRWT with a shifting effect, b fused image obtained using PCA-SSRWT, ¢ vertical shift distortion,

d horizontal shift distortion

Fig. 8 Two-level decomposition

using 2D NSRWT
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No Shifting Effect

(@)

Fused Image Obtained using NSRWT

(b) (@)

No Vertical Shift
Distortion

(0

No Horizontal Shift
Distortion

Fig. 9 Fused image (data set 1) of NSRWT with a no shifting effect, b fused image obtained using NSRWT, ¢ no vertical shift distortion, d no

horizontal shift distortion

three direction is shown in Fig. 3a where as SSRWT pro-
vides information in 0°, 90°, +45° and —45° as shown in
Fig. 3b.

SSRWT decomposition is applied to generate four
subband images for each, MS and PAN images. Using
fusion rule, corresponding four subband images are
merged. It is followed by inverse SSRWT to get the final
fused image. Figure 4 shows original MS image (Fig. 4b)
with no visual artifacts (Fig. 4a, ¢, d). The fused image
obtained by SSRWT (Fig. 5b) shows three major visual
artifacts namely color distortion, shifting effect (Fig. 5a)
and shift distortion along vertical columns and horizontal
rows as shown in Fig. Sc, d, respectively.

No Shifting Effect

(a)

Fused Image Obtained using PCA-NSRWT

(b) (@

Color distortion observed in fused image of SSRWT is
caused as standard deviation of green (g) band of input MS
image is higher than red (r) and blue (b) bands, and the
resultant fused image tends to be greenish.

Proposed Fusion Algorithms

Standard PCA Integrated with Subsampled
Rotated Wavelet Transform (PCA-SSRWT)

To overcome color distortion, a hybrid satellite image
fusion algorithms are used which integrate PCA with
SSRWT (PCA-SSRWT). Figure 6a illustrates the block

No Vertical Shift
Distortion

(c)

No Horizontal Shift
Distortion

Fig. 10 Fused image (data set 1) of PCA-NSRWT with a no shifting effect, b fused image obtained using PCA-NSRWT, ¢ no vertical shift

distortion, d no horizontal shift distortion
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(d) ()

®

Fig. 11 LANDSAT-8 OLI sensor data sets a MS image (data set 1), b PAN image (data set 1), ¢ MS image (data set 2), d PAN image (data set

2), e MS image (data set 3), f PAN image (data set 3)

schematic of PCA-SSRWT. The brown and magenta color
dotted lines represent PCA and SSRWT blocks, respec-
tively. PCA transformation is applied on MS bands to get
the principal components (PCy,...,PC,). The first princi-
pal component PC; has maximum spatial characteristics
which are common in all individual bands of MS image.
Remaining principal components carry spectral informa-
tion specific to individual r, g, and b bands of MS image.
Then, PAN image and PC; of MS band are histogram
matched to generate PANg .

SSRWT decomposition is applied on PC; and PANpc ,
which in turn generates four subband images each as
shown in Fig. 6a. After applying SSRWT to extract fea-
tures on PANpc , it generates four subband images
PAN{Zpc,)» PANZ?, PANR* and PANR” representing
approximation, horizontal, vertical and diagonal subbands,
respectively. Similarly, SSRWT decomposition of PC;
generates four subband images MS{gpc, ), MSE”, MSRA

and MSRI?D denoting approximation, horizontal, vertical and
diagonal subband images, respectively.

Four composite subband images, FUSE?,QPQ), FUSE;‘}D,
FUSERI?A and FUSER?D corresponding to approximation,
horizontal, vertical and diagonal details are, respectively,

@ Springer

created using fusion rules. Inverse SSRWT is applied to
reconstruct spatially high image PC]. This component
along with remaining principal components (PC,, ..., PC,)
are used together for inverse PCA transform to get resultant
fused image. The fused image (Fig. 7b) generated is spa-
tially high by taking advantage of PCA for spatial details in
which color distortion has been mitigated as shown in
Fig. 7 using PCA-SSRWT. The final fused image obtained
using PCA-SSRWT is spectrally low and carries visual
artifacts namely shifting effect (Fig. 7a) and shift distortion
(Fig. 7c, d) due to down sampling and upsampling process
of SSRWT. To overcome these visual artifacts and at the
same time to maintain spatial quality and improve spectral
quality of the fused image, NSRWT is preferred over
SSRWT.

Standard PCA Integrated with Nonsubsampled
Rotated Wavelet Transform (PCA-NSRWT)

The visual artifact, i.e., shifting effect which is caused
during down-sampling while shift distortion is caused
during up-sampling is observed in the fused image
obtained by SSRWT and PCA-SSRWT. To overcome
these two visual artifacts, NSRWT is used which is
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(a) (b) (0

@ (e) ®

Fig. 12 Enlarged part of fused images for data set 1 a SSRWT, b NSRWT, ¢ PCA-NSCT, d PCA-NSST, e PCA-SSRWT, f PCA-NSRWT

(a) (b) (0

@ | (e) ®

Fig. 13 Enlarged part of fused images for data set 2 a SSRWT, b NSRWT, ¢ PCA-NSCT, d PCA-NSST, e PCA-SSRWT, f PCA-NSRWT

undecimated version of SSRWT (Chavan et al., 2018). The  n using 2D NSRWT is illustrated in Fig. 8. Conceptual
two-level decomposition of an image F(x,y) with size m x working of NSRWT is same as that of SSRWT except the
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“ “s 4 > |
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fact that we do not perform subsampling in the process.
Therefore, the size of subband images after decomposition
remains same as that of input images. As we are elimi-
nating the process of sub-sampling, visual artifacts which
were observed in SSRWT are not observed in fused image
obtained using NSRWT. The final fused image obtained is
shown in Fig. 9b, where no visual artifacts (Fig. 9a, c, d)
are observed, but spatially it is degraded with improved
spectral quality. Therefore, to improve the spatial quality of
the fused image, PCA is integrated with NSRWT (PCA-
NSRWT).

The working principle of PCA-NSRWT is similar to
that of PCA-SSRWT except the sub-sampling is elimi-
nated in PCA-NSRWT. Figure 6b shows the block sche-
matic of PCA-NSRWT. The brown dotted and magenta
dotted lines represent PCA and NSRWT blocks, respec-
tively. As shown in Fig. 6b, PCA is applied on the input
MS generating PC; which is then histogram matched with
PAN image to generate new histogram matched
image,PANpc . Now, NSRWT decomposition is applied on
PC, and PANg, to generate four subband images for each
PC; (MS{pc,)» MS”, MSR* and MSE”) and PANg,
(PAN{Zpc,)» PANZ?, PANR" and PANZP). Then using

fusion rule, four composite subband planes FUSE‘E‘I‘QPCI),
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Fig. 14 Enlarged part of fused images for data set 3 a SSRWT, b NSRWT, ¢ PCA-NSCT, d PCA-NSST, e PCA-SSRWT, f PCA-NSRWT

FUSEXP, FUSER* and FUSER? are generated on which
inverse NSRWT is applied to get PCj.

This newly generated image PC] which is spatially high
is combined with remaining principal components of MS,
which are spectrally high. Later, inverse PCA is applied to
generate final fused image. The final fused image obtained
from PCA-NSRWT is spectrally as well as spatially high
with no visual artifacts and no color distortion which was
observed in SSRWT and NSRWT. Figure 10b shows fused
image obtained using PCA-NSRWT with enhanced spec-
tral quality, and no visual artifacts (Fig. 10a, c, d).

Result and Discussion
Data Sets

Experimentation was carried out on MS and PAN images
recorded by LANDSAT-8 OLI sensor. LANDSAT-8 OLI
sensors have nine bands out of which band 2, 3 and 4 are
considered for multispectral images captured through 0.45—
0.51 myu, 0.53-0.59 mu, and 0.63-0.67 mu bandwidth
range representing r, g, and b bands, respectively. PAN
band is recorded through 0.50-0.68 myu bandwidth range.
MS and PAN images have 30 and 15 m resolution,
respectively. Both MS and PAN images are co-registered
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Fig. 15 Fused images for data set 1 a PCA, b DWT, ¢ SWT, d NSCT, e NSST, f SSRWT, g NSRWT, h PCA-NSCT, i PCA-NSST, j PCA-
SSRWT, k PCA-NSRWT
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<«Fig. 16 Fused images for data set 2 a PCA, b DWT, ¢ SWT, d NSCT,
e NSST, f SSRWT, g NSRWT, h PCA-NSCT, i PCA-NSST, j PCA-
SSRWT, k PCA-NSRWT

with each other. Figure 11 shows three pairs of MS and
PAN images with first row representing MS images
(Fig. 11a, c, e) and second row PAN images (Fig. 11b, d,
f). Performance evaluation of the fused image is carried out
using visual interpretation and quantitative analysis.

Visual Interpretation

For visual interpretation and quantitative analysis, pro-
posed satellite fusion algorithms, i.e., PCA-SSRWT and
PCA-NSRWT are compared with PCA, DWT, SWT,
NSCT, NSST, SSRWT, NSRWT, PCA-NSCT and PCA-
NSST. The fused images for proposed algorithms along
with various state-of-the-art pansharpening methods are
shown through Figs. 15a-k, 16a—k and 17a—k for three data
sets, respectively. Further, we have compared the proposed
method with the pan-sharpening algorithms incorporated in
commercial software such as ArcGIS and ERDAS imagine.

Figures 12a—f, 13a—f and 14a—f show enlarged part of
fused images obtained using SSRWT, NSRWT, PCA-
NSCT, PCA-NSST, PCA-SSRWT and PCA-NSRWT for
three data sets. Significant color distortion is visible in the
fused images obtained using SSRWT (Figs. 12a, 13a, 14a)
as standard deviation of g band is more than r and b bands.
The fused images as a result of SSRWT not only suffer
from color distortion but also introduce visual artifacts like
shifting effect and shift distortion caused due to process of
subsampling. The fused images obtained using NSRWT
(Figs. 12b, 13b, 14b) do not show color distortion, and
shifting effect and shift distortion are also not observed.
Figures 12e, 13e and 14e show the fused images obtained
using PCA-SSRWT. When Fig. 13a is compared with
Fig. 13e, the color of water bodies (bottom left corner or
bottom right corner) is much better in the latter image. In
Fig. 13a, water bodies appear to be completely black body,
whereas in Fig. 13e it appears to be blue which suggests
that color distortion is less in fused images obtained using
proposed PCA-SSRWT than SSRWT. Though spectral and
spatial quality of fused image is improved using PCA—
SSRWT, it suffers from shifting effect and shift distortion
as clearly seen in Figs. 12e, 13e and 14e on left vertical
columns and bottom horizontal rows. Enlarged part of the
fused images obtained using PCA-NSCT and PCA-NSST
is shown through Figs. 12¢, d, 13c, d and 14c, d, respec-
tively. It is evident that the fused images do not suffer from
spectral distortion and resemble closely to original input
images. Though spectrally high but the fused images
obtained using PCA-NSCT, PCA-NSST suffer from

blurring effect (Fig. 12c, d), boundary of water bodies
(Fig. 13c, d) and farms (Fig. 14c, d) are not sharp enough
to be discriminated. However, visually the fused images
obtained using PCA-NSCT and PCA-NSST appear to be
similar.

The fused image as a result of PCA-NSRWT has sharp
edges around the water bodies (Fig. 13f) and does not show
color distortion. It is closely resembling to the input images
which shows that the fused image is of high spectral
quality. In Figs. 12f and 14f, one can clearly discriminate
objects, i.e., residential areas with road intersections in
Fig. 12f and cultivated/harvested farms in Fig. 14f. How-
ever, it is difficult to interpret visually using NSRWT
(Figs. 12f, 14f).

Among pansharpening algorithms used for comparison,
the fused images using PCA (Figs. 15a, 16a, 17a) are
spatially high which make them visually appealing and
attractive. However, they suffer with color distortion con-
siderably which suggest that they are spectrally distorted.
The fused images using DWT (Figs. 15b, 16b, 17b) and
SWT (Figs. 15¢, 16¢, 17¢) show no color distortion but
blurring effect. The boundaries of farms in Figs. 16b, ¢ and
17b, c are difficult to discriminate each farm. The edges of
water bodies (Fig. 16b, c) do not appear to be sharp enough
which shows that spatial quality of fused images as result
of DWT and SWT is poor. Figures 15d, 16d and 17d and
Figs. 15e, 16e and 17e show the fused images obtained
using NSCT and NSST, respectively. Figures 15d, 16d and
17d clearly show that the NSCT does not suffer from color
distortion and incorporates almost all spectral information
from MS and PAN images. It is difficult to distinguish
small details in the fused images which indicated that
NSCT fails to incorporate spatial details. However, NSCT
appears better than DWT and SWT and resembles closely
to source images. Figure 15e, 16e and 17e show the fused
image obtained using NSST with no color distortion and
improved spatial quality. However, it is clear from
Fig. 16d, e that NSCT captures edges of water bodies
where NSST fails. Figure 18 presents the fused images
obtained from the pan-sharpening algorithms incorporated
into ArcGIS and ERDAS imagine software. The first row
in Fig. 18a, considerable spectral distortion (color of water
bodies), is observed in fused image obtained by GS, IHS
and Brovey. The second row in Fig. 18b shows the fused
image generated using Hyper-spherical Color Sharpening
(HCS), high-pass filtering (HPF) and Ehlers algorithms
(incorporated in ERDAS Imagine). It is obvious that the
fused images are spatially low and suffer from blurring
effect.

The fused image as a result of PCA-NSRWT is not only
visually superior to that of individual PCA, SSRWT,
NSRWT, NSCT, NSST, PCA-NSCT, PCA-NSST and
PCA-SSRWT but also has enhanced spectral and spatial
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<«Fig. 17 Fused images for data set 3 a PCA, b DWT, ¢ SWT, d NSCT,
e NSST, f SSRWT, g NSRWT, h PCA-NSCT, i PCA-NSST, j PCA-
SSRWT, k PCA-NSRWT

quality of the fused image without introducing any visual
artifacts. It has almost retained all color information cor-
responding to original input MS images.

Quantitative Analysis

The quantitative analysis for the proposed algorithms along
with various state-of-the-art methods is presented in
Tables 1, 2 and 3 for three pairs of MS and PAN images. In
both Tables, the best results are represented black bold font
and the second best results are marked with underline
values. Ideal values for all the performance metrics are
presented by reference value in second row of both the
tables. Table 1 reports the experimental results for con-
ventional fusion metrics which includes correlation coef-
ficient (CC), entropy (H), structural similarity index metric
(SSIM) and spatial frequency (SF) (Jagalingam & Hegde,
2015). To observe the error rate of fused image, mean
square error (MSE) (Jagalingam & Hegde, 2015) is used. In
addition, Table 2 presents the spectral angle mapper
(SAM), universal image quality index (UIQI) and quality

(b)

HCS

not requiring reference (QNR) are used as assessment
metrics for spectral quality of the fused images (Palsson
et al., 2016).

SSIM measures the structural similarity through local
patterns of pixel between fused and original images. It uses
standard deviation and means of fused and original images.
SSIM ranges from — 1 to + 1, and values near to + 1
indicate that fused and original images are similar. Another
way to observe the similarity between fused and input
images is to compute row and column frequency of fused
image. Higher the value of SF, more is the similarity
between input and fused images. Spectral distortion in
fused image is measured using MSE. SAM denotes spectral
angle between original and estimated spectral vectors
(Palsson et al., 2016). If value of SAM is equal to zero,
then spectral distortion is absent otherwise spectral dis-
tortion is present. Usually, SAM is measured either in
degrees or radians. UIQI is used widely for assessing
quality of the fused images (Palsson et al., 2016). It maps
distortion by combining three factors which includes loss
of correlation, luminance distortion and contrast distortion.
The best value of UIQI is + 1. QNR is used as average
assessment metric which combined spectral distortion (D)
and spatial distortion (Dys) (Palsson et al., 2016). When
QNR is 1, values of D, and Dys are zero, i.e., no spectral
and spatial distortion observed in the fused image. The

IHS

HPF Ehlers

Fig. 18 Fused images: a pan-sharpening algorithms incorporated in ArcGIS (GS, IHS and Brovey) b pan-sharpening algorithms incorporated in

ERDAS Imagine (HCS, HPF and Ehlers)
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Table 1 Quantitative analysis of

the fused images based on Dataset Methods/parameters CC H SSIM SF MSE
statistical metrics Dataset 1 PCA 0.8336 6.25 0.9158 322 1770.98
DWT 0.8337 5.96 0.9061 2.32 1803.54
SWT 0.8333 5.96 0.9301 2.28 1804.11
NSCT 0.8411 5.96 0.9331 2.10 1803.33
NSST 0.8467 591 0.9059 2.87 69.5639
SSRWT 0.4858 6.12 0.6780 2.32 2642.44
NSRWT 0.8171 6.07 0.8962 4.02 1695.56
PCA-NSCT 0.8409 6.21 0.8879 411 71.1007
PCA-NSST 0.9674 631 0.9855 401 78.8710
PCA-SSRWT 0.4884 6.11 0.7336 327 298.317
PCA-NSRWT 0.9709 6.39 0.9917 572 67.8014
Dataset 2 PCA 0.6903 691 0.9270 2.54 1338.25
DWT 0.6362 6.83 0.9296 2.19 1286.97
SWT 0.6358 6.83 0.9453 220 1288.01
NSCT 0.6391 6.83 0.9455 2.02 1287.98
NSST 0.8901 6.82 0.9388 2.79 46.0483
SSRWT 0.3634 6.72 0.7811 2.29 1448.51
NSRWT 0.6233 6.89 0.9327 3.56 121222
PCA-NSCT 0.6917 6.90 0.9722 3.37 113.992
PCA-NSST 0.9860 6.89 0.9929 3.12 259.665
PCA-SSRWT 0.3878 6.46 0.6723 2.65 589.307
PCA-NSRWT 0.9890 6.97 0.9970 4.44 37.6471
Dataset 3 PCA 0.9629 621 0.9283 2.29 4314.81
DWT 0.9463 5.80 0.8786 1.45 4331.92
SWT 0.9462 5.80 0.9276 1.41 4332.89
NSCT 0.9498 5.80 0.9292 1.38 4331.74
NSST 0.9617 576 09144 220 65.9204
SSRWT 0.5843 5.97 0.6957 1.62 5846.87
NSRWT 0.9361 5.86 0.9218 2.44 4054.95
PCA-NSCT 0.9633 6.20 0.9560 322 93.0862
PCA-NSST 0.9574 6.15 0.9854 2.66 312,312
PCA-SSRWT 0.5083 6.04 0.8267 2.42 360.455
PCA-NSRWT 0.9722 6.28 0.9977 3.95 36.2700

lowest value of QNR is zero with increase in D, and Dyg
values.

As reported in Table 1, PCA-NSRWT outperforms
traditional pansharpening methods based on entropy and
spatial frequency. The fused image obtained by PCA-
NSRWT has richer information than any other methods.
Fused image of PCA-NSRWT has incorporated most of
the information from input MS and PAN images. SSRWT
and PCA-SSRWT perform poorly as compared to the
proposed method as it suffers from shift distortion and
shifting effect. The fused image obtained by PCA-NSCT
(dataset 1 and 2) performs better than other methods and
are highly correlated with input MS and PAN images. For
dataset 3, PCA-NSRWT performs better than other meth-
ods followed closely by PCA-NSST with difference of

@ Springer

0.0089. PCA-NSST stands second for all dataset in com-
puting similarity based on spectral features. SSIM of PCA—
NSRWT gives better result for all datasets with difference
of 0.0062, 0.0041 and 0.0123 for dataset 1, 2 and 3,
respectively. These indicates that the fused image obtained
using PCA-NSRWT is similar and integrates most of the
features from source images. SSRWT and PCA-SSRWT
fail to incorporate information from source image as it
suffers from visual artifacts. The fused image obtained
using PCA-NSRWT has incorporated most of the infor-
mation from source images and is superior to the fused
images of other methods. Table 1 clearly indicates that for
dataset 1, 2 and 3, PCA-NSRWT exhibits minimum error
rate (MSE) than NSST which stands second in the race. For
dataset 1, 2 and 3, PCA-NSRWT outperforms NSST with
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Table 2 Quantitative analysis of

the fused images based on Dataset Methods/parameters SAM UIQI D, Dy QNR

similarity metrics Dataset 1 PCA 3.13 0.8356 0.1142 0.0980 0.7989
DWT 201 0.7463 0.0159 0.0704 0.9148

SWT 2.01 0.7891 0.0230 0.0496 0.9285

NSCT 1.45 0.8042 0.0343 0.1229 0.8470

NSST 2.10 0.5928 0.0990 0.1865 0.7329

SSRWT 3.14 0.7925 0.0070 0.1902 0.8041

NSRWT 1.45 0.9190 0.1567 0.0735 0.7804

PCA-NSCT 139 0.8640 0.0847 0.0983 0.8253

PCA-NSST 1.41 0.8194 0.0837 0.0927 0.8313

PCA-SSRWT 2.19 0.8241 0.1112 0.1904 0.7195

PCA-NSRWT 1.23 0.9459 0.0023 0.0193 0.9784

Dataset 2 PCA 2.19 0.8174 0.1446 0.1364 0.7387
DWT 1.95 0.7511 0.0288 0.0518 0.9208

SWT 1.84 0.8165 0.0540 0.0637 0.8857

NSCT 1.33 0.8213 0.0707 0.0953 0.8407

NSST 2.02 0.6828 0.1266 0.1032 0.7832

SSRWT 2.98 0.6265 0.0243 0.0387 0.9379

NSRWT 131 0.9328 0.0493 0.0267 0.9253

PCA-NSCT 1.34 0.8472 0.0190 0.1176 0.8656

PCA-NSST 1.52 0.7814 0.0362 0.0118 0.9524

PCA-SSRWT 1.91 0.8024 0.1381 0.0321 0.8342

PCA-NSRWT 1.20 0.9589 0.0190 0.0213 0.9583

Dataset 3 PCA 423 0.7402 0.1353 0.1320 0.7505
DWT 3.20 0.6158 0.0635 0.0502 0.8894

SWT 3.15 0.6756 0.0093 0.0491 0.9420

NSCT 1.56 0.6924 0.0303 0.1272 0.8463

NSST 1.99 0.5594 0.1266 0.1032 0.7832

SSRWT 211 0.5169 0.0231 0.2035 0.7781

NSRWT 133 0.9211 0.1639 0.0932 0.7581

PCA-NSCT 1.37 0.8472 0.1205 0.1036 0.7883

PCA-NSST 1.49 0.6761 0.0009 0.1202 0.8790

PCA-SSRWT 1.89 0.8332 0.1307 0.2041 0.6918

PCA-NSRWT L1 0.9341 0.0082 0.0123 0.9796

notable difference of
respectively.

Table 2 gives quantitative analysis for measuring spec-
tral quality of the fused images namely SAM, UIQI, D,, Dg
and QNR. For all data sets, PCA-NSRWT shows splendid
performance as compared to other methods in preserving
spectral quality of the fused images. Though visual artifacts
persist in the fused image of PCA-SSRWT, spectral and
spatial quality has improved more than individual SSRWT
and PCA.

Table 3 gives information about the artifacts that are
introduced into fused image during process of fusion. To
verify false artifacts introduced during fusion process,
objective image fusion performance parameters along with
edge preservation metric for individual bands are used

1.7625, 8.4012 and 29.6504,

(Jagalingam & Hegde, 2015; Xydeas & Pertrovic, 2000).
Objective image fusion performance measures estimate
total amount of information transferred from source image
to fused image (Q,;) and compute the fraction of infor-
mation lost (L,y) and false artifacts (N,y) introduced
during process of fusion. As indicated in Table 3, PCA-
NSRWT retains most of the information from input MS
and PAN images followed closely by NSRWT with mini-
mum difference of 0.0008 and 0.0011 for dataset 2 and 3,
respectively. For dataset 1, NSCT performs better than
PCA-NSRWT with minimum difference of 0.0131. Except
for dataset 3, PCA performs better than all other methods
with minimum amount of data loss during fusion process.
For dataset 3, PCA-NSRWT stands first with minimum
information lost (i.e., 0.0238). NSCT introduces minimum
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Table 3 Quantitative analysis of the fused image based on objective image fusion performance and edge preservation metrics

Data sets Methods/Parameters Oupf Lays Noaps r band g band b band
Reference value close to + 1 close to 0 close to 0 close to + 1 close to + 1 close to + 1
Data set 1 PCA 0.8485 0.0349 0.1166 0.5223 0.5239 0.5267
DWT 0.2858 0.6335 0.0807 0.4335 0.4337 0.4389
SWT 0.3427 0.4895 0.1678 0.4940 0.4923 0.4929
NSCT 0.8877 0.1045 0.0078 0.4541 0.4587 0.4569
NSST 0.7152 0.2732 0.0116 0.4449 0.3883 0.4371
SSRWT 0.8735 0.1091 0.0174 0.4780 0.4696 0.4585
NSRWT 0.4169 0.1007 0.4823 0.6354 0.6370 0.6371
PCA-NSCT 0.8688 0.0593 0.0719 0.5480 0.5330 0.5439
PCA-NSST 0.8364 0.0812 0.0824 0.5718 0.5551 0.5696
PCA-SSRWT 0.6029 0.1351 0.2620 0.5075 0.5011 0.5052
PCA-NSRWT 0.8746 0.1090 0.0164 0.6530 0.6517 0.6526
Data set 2 PCA 0.9299 0.0305 0.0396 0.4688 0.5049 0.4710
DWT 0.2505 0.6900 0.0596 0.4577 0.4568 0.4539
SWT 0.2969 0.6129 0.0902 0.5050 0.4901 0.4998
NSCT 0.9299 0.0642 0.0059 0.4476 0.4408 0.4374
NSST 0.7428 0.2442 0.0131 0.4772 0.4883 0.4192
SSRWT 0.6045 0.1275 0.2680 0.4973 0.5100 0.4622
NSRWT 0.9309 0.0611 0.0081 0.6069 0.5926 0.6268
PCA-NSCT 0.8884 0.0807 0.0309 0.5279 0.5159 0.5199
PCA-NSST 0.7880 0.1790 0.0330 0.0.5247 0.5442 0.4702
PCA-SSRWT 0.6876 0.1452 0.1673 0.5131 0.4996 0.4913
PCA-NSRWT 0.9317 0.0608 0.0075 0.5995 0.5940 0.5802
Data set 3 PCA 0.9458 0.0471 0.0070 0.5086 0.5449 0.5025
DWT 0.6805 0.1465 0.1730 0.5026 0.5056 0.4928
SWT 0.6159 0.1300 0.2541 0.5479 0.5359 0.5390
NSCT 0.9400 0.0546 0.0054 0.4911 0.4840 0.4645
NSST 0.8260 0.1642 0.0098 0.5937 0.5903 0.4784
SSRWT 0.2498 0.6916 0.0586 0.5335 0.5454 0.4875
NSRWT 0.9467 0.0469 0.0064 0.6136 0.6093 0.5964
PCA-NSCT 0.8996 0.0779 0.0226 0.5708 0.5564 0.5173
PCA-NSST 0.8356 0.1382 0.0262 0.5997 0.5925 0.5279
PCA-SSRWT 0.3009 0.6139 0.0852 0.5269 0.5250 0.5148
PCA-NSRWT 0.9478 0.0238 0.0284 0.6310 0.6236 0.6429

amount of false artifacts during fusion. DWT and SWT
show poor performance in retaining information from
source images. SSRWT and PCA-SSRWT show very poor
performance for the fact that both algorithms introduce
visual artifacts (shifting effect and shift distortion) during
fusion process.

Edge information for individual r, g and b bands of
fused image is presented in Table 2. For data set 1 and 3,
PCA-NSRWT successfully preserves edge information for
all bands followed by NSRWT. For data set 2, PCA-
NSRWT shows better performance in preserving edge
information for band g, whereas NSRWT has better edge
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information for bands r, b with 0.0074 and 0.0466 differ-
ence to that of PCA-NSRWT. For band g, PCA-NSRWT
shows better result with difference of 0.014. Even though
PCA-SSRWT suffers from visual artifacts, it stands third
in the list in preserving edge information. In general, PCA—
NSRWT shows better result in preserving edge information
compared to other methods. Table 4 presents the time
complexity in terms of execution time in seconds on
average basis for all the algorithms. Though PCA-NSRWT
has large average execution time than individual PCA and
NSRWT, PCA-NSRWT has better spectral and spatial
quality. The drawbacks (shifting effect and shift distortion)
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Table 4 Execution time (seconds) of different fusion algorithms
(CPU i5 2.30 GHz, RAM 8 GB, Matlab 2013a)

Methods PCA DWT SWT NSCT NSST

Execution time 2.58 13.15 327.99 642.40 669.92

Methods SSRWT NSRWT PCA- PCA- PCA-

NSCT NSST SSRWT

Execution 20.33 49.17 594.31 656.16 21.50
Time

Method PCA-NSRWT

Execution time 50.44

of SSRWT and PCA-SSRWT are overcome by NSRWT
and PCA-NSRWT. Even though the proposed algorithm
gives good result, there is still chance of improvement in
spectral and spatial quality of the fused image. In future,
we will be testing the proposed algorithm with images
captured by various sensors, e.g., QuickBird, IKONOS,
and GeoEye. Further, we also need to test the proposed
algorithm by combining data from various sensors, e.g.,
MS image captured from Landsat-8 and PAN image from
QuickBird.

On the basis of visual and quantitative analysis, it is
evident that PCA-NSRWT has enhanced fused image
spectrally as well as spatially. PCA—SSRWT has enhanced
fused image spectrally, but it is a poor performer than
PCA-NSRWT due to visual artifacts. The quantitative
result advocates the visual interpretation, and it is apparent
to say that among the two proposed hybrid satellite fusion
algorithms, PCA-NSRWT performs better then PCA-
SSRWT.

Conclusion

This paper presents two pansharpening algorithms based on
standard PCA combined with rotated wavelet transform
namely PCA-SSRWT and PCA-NSRWT. Visual artifacts
like color distortion, shifting effect and shift distortion
introduced by SSRWT and PCA-SSRWT algorithms
degrade spectral and spatial quality of the fused image. The
fused image obtained using NSRWT dose not show shift-
ing effect and shift distortion, but spatial quality is degra-
ded with improved spectral quality. To improve spatial
quality by maintaining spectral quality, NSRWT is inte-
grated with PCA (PCA-NSRWT). PCA-NSRWT not only
eliminates visual artifacts but also improves spectral
quality by taking advantage of NSRWT, while spatial
quality of the fused image is enhanced by taking benefit of

PCA where principal component (PC;) incorporates spatial
information which is common to all the bands (r, g and
b) of MS image which is histogram matched with PAN
image. The fused image generated using PCA-NSRWT is
superior to that of other fusion algorithms where detail
features are easily distinguishable visually. The fused
image as a result of PCA-NSRWT is evaluated using
various performance metrics where it outperforms not only
PCA and NSRWT but also other methods. Fused image of
PCA-NSRWT incorporates spectral and spatial details
from source images. PCA-NSRWT shows its capability in
transferring features from input images into fused image
without addition of false artifacts during fusion process.
PCA-NSRWT is also able to preserve almost all edge
information from MS and PAN images into fused image.
The quantitative investigation actively exhibits robustness
of the PCA-NSRWT through various performance metrics,
and the overall performance of proposed algorithms for
fusing satellite images shows astounding results over other
fusion algorithms. The visual and quantitative analysis
shows that standard PCA works better with NSRWT than
SSRWT.
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